Kernel methods for manifold estimation

被引:0
|
作者
Schölkopf, B [1 ]
机构
[1] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
关键词
Kernel methods; support vector machines; quantile estimation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe methods for estimating manifolds in high-dimensional spacs. They work by mapping the data into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 50 条
  • [1] MANIFOLD LEARNING BASED ON KERNEL DENSITY ESTIMATION
    Kuleshov, A. P.
    Bernstein, A., V
    Yanovich, Yu A.
    [J]. UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (02): : 327 - 338
  • [2] Methods of density estimation on the Grassmann manifold
    Chikuse, Y
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 354 : 85 - 102
  • [3] Kernel density estimation for a stochastic process with values in a Riemannian manifold
    Isman, Mohamed Abdillahi
    Nefzi, Wiem
    Mbaye, Papa
    Khardani, Salah
    Yao, Anne-Francoise
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2024,
  • [4] Manifold Ranking-Based Kernel Propagation for Saliency Estimation
    Jian, Meng
    Wu, Lifang
    Zhang, Xiangyin
    He, Yonghao
    [J]. CONFERENCE PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2018, : 421 - 425
  • [5] From Gaussian kernel density estimation to kernel methods
    Wang, Shitong
    Deng, Zhaohong
    Chung, Fu-lai
    Hu, Wenjun
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 119 - 137
  • [6] From Gaussian kernel density estimation to kernel methods
    Shitong Wang
    Zhaohong Deng
    Fu-lai Chung
    Wenjun Hu
    [J]. International Journal of Machine Learning and Cybernetics, 2013, 4 : 119 - 137
  • [7] Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices
    Jayasumana, Sadeep
    Hartley, Richard
    Salzmann, Mathieu
    Li, Hongdong
    Harandi, Mehrtash
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 73 - 80
  • [8] Kernel methods for center manifold approximation and a weak data-based version of the Center Manifold Theorem
    Haasdonk, B.
    Hamzi, B.
    Santin, G.
    Wittwar, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 427
  • [9] Kernel methods for software effort estimation Effects of different kernel functions and bandwidths on estimation accuracy
    Kocaguneli, Ekrem
    Menzies, Tim
    Keung, Jacky W.
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2013, 18 (01) : 1 - 24
  • [10] Riemann manifold Langevin methods on stochastic volatility estimation
    Zevallos, Mauricio
    Gasco, Loretta
    Ehlers, Ricardo
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7942 - 7956