Effects of the presence of sheet iron in freshwater sediment on the performance of a sediment microbial fuel cell

被引:28
|
作者
Zhang, Hongkun [1 ,2 ]
Zhu, Dawei [1 ,2 ]
Song, Tian-shun [1 ,2 ,3 ]
Ouyang, Pingkai [1 ,2 ,4 ,5 ]
Xie, Jingjing [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Coll Life Sci & Pharmaceut Engn, Nanjing 211816, Jiangsu, Peoples R China
[3] China Acad Sci & Technol Dev, Jiangsu Branch, Nanjing, Peoples R China
[4] Nanjing Tech Univ, Natl Engn Tech Res Ctr Biotechnol, Nanjing 211816, Jiangsu, Peoples R China
[5] Natl Engn Tech Res Ctr Biotechnol, Nanjing, Jiangsu, Peoples R China
关键词
Sediment microbial fuel cell; Electricity; Iron; Corrosion; ELECTRICITY; POWER; GENERATION; MINERALS; REMOVAL; CATHODE; SOIL;
D O I
10.1016/j.ijhydene.2015.09.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we demonstrate the effect of iron sheet on the output power of sediment microbial fuel cells (SMFCs). An SMFC with iron sheet present, but not in the circuit (SMFC-GF-iron) displayed a maximum power density of 63 mW m(-2), whereas we find 37 mW m(-2) for that SMFC with the iron sheet not present (SMFC-GF). Furthermore, the SMFC with an iron sheet in the circuit (SMFC-iron) had a maximum power density of 170 mW m(-2). The effect of sheet iron, out of the circuit, was to improve the iron reduction microbial activity, while, within the circuit, it produced a large number of electrons from the electrochemical corrosion yielding higher power production. The study suggests that the addition of iron sheet to an SMFC is an easy and effective method for enhancing the output power of SMFCs. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16566 / 16571
页数:6
相关论文
共 50 条
  • [31] Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water
    Sajana, T. K.
    Ghangrekar, M. M.
    Mitra, A.
    [J]. AQUACULTURAL ENGINEERING, 2014, 61 : 17 - 26
  • [32] Alteration of sediment organic matter in sediment microbial fuel cells
    Hong, Seok Won
    Kim, Han S.
    Chung, Tai Hak
    [J]. ENVIRONMENTAL POLLUTION, 2010, 158 (01) : 185 - 191
  • [33] The Application of Sediment Microbial Fuel Cells in Aquacultural Sediment Remediation
    Qi, Jiarui
    Sun, Zhuteng
    Zhang, Jinfeng
    Ye, Chen
    [J]. WATER, 2022, 14 (17)
  • [34] Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation
    Hamdan, Hamdan Z.
    Salam, Darine A.
    [J]. ENVIRONMENTAL POLLUTION, 2020, 263
  • [35] Effects of initial sediment properties on start-up times for sediment microbial fuel cells
    Song, Na
    Jiang, He-Long
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (21) : 10082 - 10093
  • [36] Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes
    Pisciotta, John M.
    Zaybak, Zehra
    Call, Douglas F.
    Nam, Joo-Youn
    Logan, Bruce E.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (15) : 5212 - 5219
  • [37] IoT Sensor Network Powered by Sediment Microbial Fuel Cell
    Niwa, Masato
    Pan, Zhenni
    Shimamoto, Shigeru
    [J]. 2020 IEEE 17TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC 2020), 2020,
  • [38] Sediment microbial fuel cell utilizing river sediments and soil
    Bardarov, I.
    Hubenova, Y.
    Mitov, M.
    [J]. BULGARIAN CHEMICAL COMMUNICATIONS, 2013, 45 : 223 - 226
  • [39] A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere
    Chen, Zheng
    Huang, Yan-chao
    Liang, Jian-hong
    Zhao, Feng
    Zhu, Yong-guan
    [J]. BIORESOURCE TECHNOLOGY, 2012, 108 : 55 - 59
  • [40] Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell
    Donovan, Conrad
    Dewan, Alim
    Heo, Deukhyoun
    Beyenal, Haluk
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (22) : 8591 - 8596