Dissipation signatures of the normal and superfluid phases in torsion pendulum experiments with 3He in aerogel

被引:2
|
作者
Zhelev, N. [1 ]
Bennett, R. G. [1 ]
Smith, E. N. [1 ]
Pollanen, J. [2 ]
Halperin, W. P. [2 ]
Parpia, J. M. [1 ]
机构
[1] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
SILICA AEROGELS; THERMAL-CONDUCTIVITY; NORMAL LIQUID-HE-3; MUTUAL FRICTION; B-PHASE; STATE; VISCOSITY; DENSITY; ATTENUATION; TRANSITION;
D O I
10.1103/PhysRevB.89.094513
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present data for the energy dissipation factor Q(-1) over a broad temperature range at various pressures of a torsion pendulum setup used to study He-3 confined in a 98% open silica aerogel. Values for Q(-1) above T-c are temperature independent and have weak pressure dependence. Below T-c, a deliberate axial compression of the aerogel by 10% widens the range of metastability for a superfluid equal spin pairing (ESP) state; we observe this ESP phase on cooling and the B phase on warming over an extended temperature region. While the dissipation for the B phase tends to zero as T -> 0, Q(-1) exhibits a peak value greater than that at T-c at intermediate temperatures. Values for Q(-1) in the ESP phase are consistently higher than in the B phase and are proportional to rho(s) / rho until the ESP to B phase transition is attained. We apply a viscoelastic collision-drag model, which couples the motion of the helium and the aerogel through a frictional relaxation time tau(f). We conclude that unless tau(f) is an order of magnitude larger than expected, an additional mechanism to dissipate energy not captured in the collision-drag model and related to the emergence of the superfluid order must exist. The extra dissipation below T-c is possibly associated with mutual friction between the superfluid phases and the clamped normal fluid. The pressure dependence of the measured dissipation in both superfluid phases is likely related to the pressure dependence of the gap structure of the "dirty" superfluid. The large dissipation in the ESP state is consistent with the phase being the A or the Polar with the order parameter nodes oriented in the plane of the cell and perpendicular to the aerogel anisotropy axis.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Scaling Properties of Superfluid 3He in Aerogel
    Gavin Lawes
    Simon C. J. Kingsley
    Andrei Golov
    Norbert Mulders
    James V. Porto
    Jeevak M. Parpia
    Journal of Low Temperature Physics, 2000, 121 : 567 - 572
  • [42] Scaling properties of superfluid 3He in aerogel
    Lawes, G
    Kingsley, SCJ
    Golov, A
    Mulders, N
    Porto, JV
    Parpia, JM
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 567 - 572
  • [43] Oscillating Nematic Aerogel in Superfluid 3He
    Dmitriev, V. V.
    Kutuzov, M. S.
    Soldatov, A. A.
    Surovtsev, E., V
    Yudin, A. N.
    JETP LETTERS, 2020, 112 (12) : 780 - 785
  • [44] Thermal conductivity of superfluid 3He in aerogel
    Sharma, P
    Sauls, JA
    PHYSICA B-CONDENSED MATTER, 2003, 329 : 313 - 315
  • [45] Thermodynamic Potential for Superfluid 3He in Aerogel
    Ali, Sarosh
    Zhang, Liangsheng
    Sauls, J. A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 162 (3-4) : 233 - 242
  • [46] Superfluid 3He in Squeezed Nematic Aerogel
    V. V. Dmitriev
    M. S. Kutuzov
    A. A. Soldatov
    A. N. Yudin
    JETP Letters, 2019, 110 : 734 - 738
  • [47] Phase Transition of Superfluid 3He in Aerogel
    Ryusuke Kado
    Hisashi Nakagawa
    Ken Obara
    Hideo Yano
    Osamu Ishikawa
    Tohru Hata
    Journal of Low Temperature Physics, 2007, 148 : 585 - 589
  • [48] Phase transition of superfluid 3He in aerogel
    Kado, Ryusuke
    Nakagawa, Hisashi
    Obara, Ken
    Yano, Hideo
    Ishikawa, Osamu
    Hata, Tohru
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 148 (5-6) : 585 - 589
  • [49] Oscillating Nematic Aerogel in Superfluid 3He
    V. V. Dmitriev
    M. S. Kutuzov
    A. A. Soldatov
    E. V. Surovtsev
    A. N. Yudin
    JETP Letters, 2020, 112 : 780 - 785
  • [50] Superfluid transition in superfluid 3He in radially compressed aerogel
    Hunger, P.
    Bunkov, Yu M.
    Collin, E.
    Godfrin, H.
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400