Exploring Human-Machine Interfaces for Teleoperation of Excavator

被引:0
|
作者
Lee, Jin Sol [1 ]
Ham, Youngjib [1 ]
机构
[1] Texas A&M Univ, Dept Construct Sci, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
With the advancement of automation and robotic technologies, the teleoperation has been leveraged as a promising solution for human workers in a hazardous construction work environment. Since human operators and construction sites are separated in a distance, teleoperation requires a seamless human-machine interface, an intermediate medium, to communicate between humans and machines in construction sites. Several types of teleoperation interfaces including conventional joysticks, haptic devices, graphic user interfaces, auditory interfaces, and tactile interfaces have been developed to control and command construction robotics remotely. The ultimate goal of human-machine interfaces for remote operations is to make intuitive sensory channels that can provide and receive enough information while reducing the associated cognitive and physical load on human operators. Previously developed interfaces have tried to achieve such goals, but each interface still has challenges that should be assessed for enhancing the future teleoperation application in construction workplaces. This paper examines different human-machine interfaces for excavator teleoperation in terms of its on-site usability and intuitiveness. The capabilities of the interfaces for excavator teleoperation are evaluated based on their limitations and requirements. The outcome is expected to provide better understanding of teleoperation interfaces for excavators and guiding future directions for addressing underlying challenges.
引用
收藏
页码:757 / 765
页数:9
相关论文
共 50 条
  • [22] Overview of Auditory Representations in Human-Machine Interfaces
    Csapo, Adam
    Wersenyi, Gyoergy
    ACM COMPUTING SURVEYS, 2013, 46 (02)
  • [23] Adaptive interfaces as an approach to human-machine cooperation
    Eggleston, RG
    DESIGN OF COMPUTING SYSTEMS: SOCIAL AND ERGONOMIC CONSIDERATIONS, 1997, 21 : 495 - 500
  • [24] External human-machine interfaces: Gimmick or necessity?
    de Winter, Joost
    Dodou, Dimitra
    TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2022, 15
  • [25] Adapting Human-Machine Interfaces to User Performance
    Danziger, Zachary
    Fishbach, Alon
    Mussa-Ivaldi, Ferdinando A.
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 4486 - +
  • [26] Human-Machine Interfaces for Robotic System Control
    Roibu, Horatiu
    Popescu, Dorin
    Abagiu, Marian-Marcel
    Bizdoaca, Nicu-George
    2018 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL ELECTRICITY (ICATE), 2018,
  • [27] Modeling and canceling tremor in human-machine interfaces
    Riviere, CN
    Thakor, NV
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1996, 15 (03): : 29 - 36
  • [28] Exploration of Mandibular Inputs for Human-Machine Interfaces
    Yaslam, Abdulaziz
    Feron, Eric
    Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2022, 2022-October : 46 - 51
  • [29] Machine Learning-Supported Designing of Human-Machine Interfaces
    Bantay, Laszlo
    Abonyi, Janos
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [30] A Robotic Teleoperation System for Precise Robotic Manipulation by Human-Machine Interaction
    SUN Fuchun
    GUO Di
    CHEN Yang
    上海航天(中英文), 2022, 39 (04) : 114 - 127