This paper describes the start-up process of a space activate thermal control system, two-phase mechanically Pumped cooling loop (MPCL) with two evaporators, in ground-based testing. Each evaporator has an outer diameter of 3 mm and a length of 10 m and the total loop of the system is about 40 m. In this paper, the system design and work principle as well as the test setup of an MPCL are presented and the start-up processes of the MPCL are studied. The experiments on the start-up processes under different evaporative temperatures were carried out. Tests attention has been paid to the system performance characteristics such as differential pressure, absolute pressure, mass flow rate, main components temperatures and so on. During the start-up processes, the system presents a good stability and each part of the system performs a reasonable temperature wave, except some superheat phenomena in the evaporator which cause a pressure shock to the system. The superheat is mainly related to evaporative temperature and the initial liquid distribution in the evaporator. In general, the lower the evaporative temperature is the higher superheat occurs. When set-point evaporative temperature is -15 degrees C, the differential pressure shock can reach 6.23 bar which is as 7.5 times as the stable state. In conclusion, the MPCL with dual-evaporators can be started up successfully and is an effective kind of thermal control technology for future space applications. (C) 2008 Elsevier Inc. All rights reserved.