Biorthogonal Wavelets Based on Interpolatory √2 Subdivision

被引:1
|
作者
Wang, H. [1 ]
Ma, W. [1 ]
机构
[1] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
关键词
second generation wavelet; lifting scheme; interpolatory root 2 subdivision; MULTIRESOLUTION ANALYSIS; SURFACES; SCHEME; CONSTRUCTION;
D O I
10.1111/j.1467-8659.2009.01349.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article presents an efficient construction of biorthogonal wavelets built upon an interpolatory root 2 subdivision for quadrilateral meshes. The interpolatory subdivision scheme is first turned into a scheme for reversible primitive wavelet synthesis. Some desired properties are then incorporated in the primitive wavelet using the lifting scheme. The analysis and synthesis algorithms of the resulting new wavelet are finally obtained as local and in-place lifting operations. The wavelet inherits the advantage of root 2 refinement with added levels of resolution. Numerical experiments show that the lifted wavelet built upon interpolatory root 2 subdivision has sufficient stability and better performance in dealing with closed or open semi-regular quadrilateral meshes compared with other existing wavelets for quadrilateral manifold meshes.
引用
收藏
页码:1572 / 1585
页数:14
相关论文
共 50 条
  • [21] Biorthogonal wavelets on the spectrum
    Ahmad, Owais
    Sheikh, Neyaz A.
    Nisar, Kottakkaran Sooppy
    Shah, Firdous A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4479 - 4490
  • [22] Multidimensional interpolatory subdivision schemes
    Riemenschneider, SD
    Shen, ZW
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) : 2357 - 2381
  • [23] FAMILIES OF BIORTHOGONAL WAVELETS
    KAROUI, A
    VAILLANCOURT, R
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (04) : 25 - 39
  • [24] Biorthogonal butterworth wavelets
    Zheludev, VA
    Averbuch, AZ
    Pevnyi, AB
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3645 - 3648
  • [25] Shape preserving HC2 interpolatory subdivision
    Lettieri, Davide
    Manni, Carla
    Pelosi, Francesca
    Speleers, Hendrik
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 751 - 779
  • [26] Interpolatory ternary subdivision surfaces
    Li, GQ
    Ma, WY
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (01) : 45 - 77
  • [27] Biorthogonal wavelets in Hm(ℝ)
    F. Bastin
    C. Boigelot
    [J]. Journal of Fourier Analysis and Applications, 1998, 4 : 749 - 768
  • [28] Periodic cardinal interpolatory wavelets
    Chen, HL
    Xiao, SL
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 1998, 19 (02) : 133 - 142
  • [29] Construction of m-band Orthonormal Wavelets by 2N-point m-ary Interpolatory Subdivision Schemes
    Geng, Jing
    Zheng, Hongchan
    Song, Weijie
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (02): : 312 - 319
  • [30] PERIODIC CARDINAL INTERPOLATORY WAVELETS
    CHEN HANLIN * XIAO SHAOLIANG *
    [J]. Chinese Annals of Mathematics, 1998, (02) : 1 - 10