Biorthogonal Wavelets Based on Interpolatory √2 Subdivision

被引:1
|
作者
Wang, H. [1 ]
Ma, W. [1 ]
机构
[1] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
关键词
second generation wavelet; lifting scheme; interpolatory root 2 subdivision; MULTIRESOLUTION ANALYSIS; SURFACES; SCHEME; CONSTRUCTION;
D O I
10.1111/j.1467-8659.2009.01349.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article presents an efficient construction of biorthogonal wavelets built upon an interpolatory root 2 subdivision for quadrilateral meshes. The interpolatory subdivision scheme is first turned into a scheme for reversible primitive wavelet synthesis. Some desired properties are then incorporated in the primitive wavelet using the lifting scheme. The analysis and synthesis algorithms of the resulting new wavelet are finally obtained as local and in-place lifting operations. The wavelet inherits the advantage of root 2 refinement with added levels of resolution. Numerical experiments show that the lifted wavelet built upon interpolatory root 2 subdivision has sufficient stability and better performance in dealing with closed or open semi-regular quadrilateral meshes compared with other existing wavelets for quadrilateral manifold meshes.
引用
收藏
页码:1572 / 1585
页数:14
相关论文
共 50 条
  • [1] Interpolatory subdivision schemes and wavelets
    Micchelli, CA
    [J]. JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) : 41 - 71
  • [2] √3-Subdivision-based biorthogonal wavelets
    Wang, Huawei
    Qin, Kaihuai
    Sun, Hanqiu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (05) : 914 - 924
  • [3] Biorthogonal wavelets based on gradual subdivision of quadrilateral meshes
    Wang, Huawei
    Tang, Kai
    Qin, Kaihuai
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (09) : 816 - 836
  • [4] Biorthogonal Loop-Subdivision Wavelets
    M. Bertram
    [J]. Computing, 2004, 72 : 29 - 39
  • [5] Biorthogonal loop-subdivision wavelets
    Bertram, M
    [J]. COMPUTING, 2004, 72 (1-2) : 29 - 39
  • [6] Biorthogonal wavelets associated with two-dimensional interpolatory function
    Yang, Jianwei
    Tang, Yuan Yan
    Cheng, Zhengxing
    You, Xinge
    [J]. WAVELET ANALYSIS AND APPLICATIONS, 2007, : 91 - +
  • [7] Biorthogonal Butterworth wavelets derived from discrete interpolatory splines
    Averbuch, AZ
    Pevnyi, AB
    Zheludev, VA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (11) : 2682 - 2692
  • [8] CONSTRUCTION AND APPLICATIONS OF BIORTHOGONAL TERNARY LOOP SUBDIVISION WAVELETS
    Xue, Yaohong
    Liang, Xuezhang
    Li, Qiang
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2011, 9 (04) : 531 - 548
  • [9] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Mariantonia Cotronei
    Caroline Moosmüller
    Tomas Sauer
    Nada Sissouno
    [J]. Constructive Approximation, 2019, 50 : 341 - 366
  • [10] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Cotronei, Mariantonia
    Moosmuller, Caroline
    Sauer, Tomas
    Sissouno, Nada
    [J]. CONSTRUCTIVE APPROXIMATION, 2019, 50 (02) : 341 - 366