SUBGRAPH DENSITY AND EPIDEMICS OVER NETWORKS

被引:0
|
作者
Zhang, June [1 ]
Moura, Jose M. F. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
关键词
Reversible Markov process; equilibrium distribution; SIS epidemics; graph density; densest subgraph; k-densest subgraph; topology dependent random interaction model; networks;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We model a SIS (susceptible-infected-susceptible) epidemics over a static, finite-sized network as a continuous-time Markov process using the scaled SIS epidemics model. In our previous work, we derived the closed form description of the equilibrium distribution that explicitly accounts for the network topology and showed that themost probable equilibrium state demonstrates threshold behavior. In this paper, we will show how subgraph structures in the network topology impact the most probable state of the long run behavior of a SIS epidemics (i.e., stochastic diffusion process) over any static, finite-sized, network.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Effect of population density on epidemics
    Li, Ruiqi
    Richmond, Peter
    Roehner, Bertrand M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 510 : 713 - 724
  • [32] Subgraph Matching over Graph Federation
    Yuan, Ye
    Ma, Delong
    Wen, Zhenyu
    Zhang, Zhiwei
    Wang, Guoren
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 15 (03): : 437 - 450
  • [33] Estimation of Subgraph Densities in Noisy Networks
    Chang, Jinyuan
    Kolaczyk, Eric D.
    Yao, Qiwei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 361 - 374
  • [34] Heterogeneous Subgraph Features for Information Networks
    Spitz, Andreas
    Costa, Diego
    Chen, Kai
    Greulich, Jan
    Geiss, Johanna
    Wiesberg, Stefan
    Gertz, Michael
    GRADES-NDA '18: PROCEEDINGS OF THE 1ST ACM SIGMOD JOINT INTERNATIONAL WORKSHOP ON GRAPH DATA MANAGEMENT EXPERIENCES & SYSTEMS (GRADES) AND NETWORK DATA ANALYTICS (NDA) 2018 (GRADES-NDA 2018), 2018,
  • [35] Periodic subgraph mining in dynamic networks
    Lahiri, Mayank
    Berger-Wolf, Tanya Y.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (03) : 467 - 497
  • [36] Comment on "Subgraph centrality in complex networks"
    Stevanovic, Dragan
    PHYSICAL REVIEW E, 2013, 88 (02)
  • [37] Mining large networks with subgraph counting
    Bordino, Ilaria
    Donato, Debora
    Gionis, Aristides
    Leonardi, Stefano
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 737 - +
  • [38] Generalized Densest Subgraph in Multiplex Networks
    Behrouz, Ali
    Hashemi, Farnoosh
    COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 3, COMPLEX NETWORKS 2023, 2024, 1143 : 49 - 61
  • [39] Noisy Subgraph Isomorphisms on Multiplex Networks
    Jin, Hui
    He, Xie
    Wang, Yanghui
    Li, Hao
    Bertozzi, Andrea L.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4899 - 4905
  • [40] Periodic subgraph mining in dynamic networks
    Mayank Lahiri
    Tanya Y. Berger-Wolf
    Knowledge and Information Systems, 2010, 24 : 467 - 497