DNA methylation-based age estimation in pediatric healthy tissues and brain tumors

被引:2
|
作者
Kling, Teresia [1 ]
Wenger, Anna [1 ]
Caren, Helena [1 ]
机构
[1] Univ Gothenburg, Sahlgrenska Ctr Canc Res, Dept Lab Med, Inst Biomed,Sahlgrenska Acad, Gothenburg, Sweden
来源
AGING-US | 2020年 / 12卷 / 21期
基金
瑞典研究理事会;
关键词
DNA methylation; children; epigenetic clock; methylation age; brain tumor; EPIGENETIC CLOCK; CLASSIFICATION; EXPRESSION; SUBGROUPS; ACVR1;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Several DNA methylation clocks have been developed to reflect chronological age of human tissues, but most clocks have been trained on adult samples. The rapid methylome changes in children and the role of epigenetics in pediatric tumors calls for tools accurately estimating methylation age in children. We aimed to evaluate seven methylation clocks in multiple tissues from healthy children to inform future studies on the optimal clock for pediatric cohorts, and analyzed the methylation age in brain tumors. We found that clocks trained on pediatric samples were the best in all tested tissues, highlighting the need for dedicated clocks. For blood samples, the Skin and blood clock had the best correlation with chronological age, while PedBE was the most accurate for saliva and buccal samples, and Horvath for brain tissue. Horvath methylation age was accelerated in pediatric brain tumors and the acceleration was subtype-specific for atypical teratoid rhabdoid tumor (ATRT), ependymoma, medulloblastoma and glioma. The subtypes with the highest acceleration corresponded to the worst prognostic categories in ATRT, ependymoma and glioma, whereas the relationship was reversed in medulloblastoma. This suggests that methylation age has potential as a prognostic biomarker in pediatric brain tumors and should be further explored.
引用
收藏
页码:21037 / 21056
页数:20
相关论文
共 50 条
  • [21] DNA methylation-based age prediction using cell separation algorithm
    Jaddi, Najmeh Sadat
    Abadeh, Mohammad Saniee
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [22] Evaluation of different computational methods for DNA methylation-based biological age
    Di Lena, Pietro
    Sala, Claudia
    Nardini, Christine
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (04)
  • [23] Adaptive feature selection framework for DNA methylation-based age prediction
    Zahra Momeni
    Mohammad Saniee Abadeh
    Soft Computing, 2022, 26 : 3777 - 3788
  • [24] DNA methylation-based classification of malformations of cortical development in the human brain
    Samir Jabari
    Katja Kobow
    Tom Pieper
    Till Hartlieb
    Manfred Kudernatsch
    Tilman Polster
    Christian G. Bien
    Thilo Kalbhenn
    Matthias Simon
    Hajo Hamer
    Karl Rössler
    Martha Feucht
    Angelika Mühlebner
    Imad Najm
    José Eduardo Peixoto-Santos
    Antonio Gil-Nagel
    Rafael Toledano Delgado
    Angel Aledo-Serrano
    Yanghao Hou
    Roland Coras
    Andreas von Deimling
    Ingmar Blümcke
    Acta Neuropathologica, 2022, 143 : 93 - 104
  • [25] DNA methylation-based classification of malformations of cortical development in the human brain
    Jabari, Samir
    Kobow, Katja
    Pieper, Tom
    Hartlieb, Till
    Kudernatsch, Manfred
    Polster, Tilman
    Bien, Christian G.
    Kalbhenn, Thilo
    Simon, Matthias
    Hamer, Hajo
    Roessler, Karl
    Feucht, Martha
    Muehlebner, Angelika
    Najm, Imad
    Peixoto-Santos, Jose Eduardo
    Gil-Nagel, Antonio
    Delgado, Rafael Toledano
    Aledo-Serrano, Angel
    Hou, Yanghao
    Coras, Roland
    von Deimling, Andreas
    Bluemcke, Ingmar
    ACTA NEUROPATHOLOGICA, 2022, 143 (01) : 93 - 104
  • [26] Marijuana use and DNA methylation-based biological age in young adults
    Drew R. Nannini
    Yinan Zheng
    Brian T. Joyce
    Tao Gao
    Lei Liu
    David R. Jacobs
    Pamela Schreiner
    Chunyu Liu
    Steve Horvath
    Ake T. Lu
    Kristine Yaffe
    Stephen Sidney
    Philip Greenland
    Donald M. Lloyd-Jones
    Lifang Hou
    Clinical Epigenetics, 2022, 14
  • [27] Adaptive feature selection framework for DNA methylation-based age prediction
    Momeni, Zahra
    Abadeh, Mohammad Saniee
    SOFT COMPUTING, 2022, 26 (08) : 3777 - 3788
  • [28] Marijuana use and DNA methylation-based biological age in young adults
    Nannini, Drew R.
    Zheng, Yinan
    Joyce, Brian T.
    Gao, Tao
    Liu, Lei
    Jacobs, David R., Jr.
    Schreiner, Pamela
    Liu, Chunyu
    Horvath, Steve
    Lu, Ake T.
    Yaffe, Kristine
    Sidney, Stephen
    Greenland, Philip
    Lloyd-Jones, Donald M.
    Hou, Lifang
    CLINICAL EPIGENETICS, 2022, 14 (01)
  • [29] Explainable artificial intelligence of DNA methylation-based brain tumor diagnostics
    Salvatore Benfatto
    Martin Sill
    David T. W. Jones
    Stefan M. Pfister
    Felix Sahm
    Andreas von Deimling
    David Capper
    Volker Hovestadt
    Nature Communications, 16 (1)
  • [30] Invited Review: DNA methylation-based classification of paediatric brain tumours
    Perez, E.
    Capper, D.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2020, 46 (01) : 28 - 47