Efficient Positivity Test Algorithms for Parametric and Nonparametric Sequences of Covariance Estimates

被引:0
|
作者
Panahi, Issa M. S. [1 ]
机构
[1] Univ Texas Dallas, Dept Elect Engn, Richardson, TX 75080 USA
关键词
Covariance estimates; nonparametric sequence; parametric sequence; positivity test algorithms; REAL POLYNOMIALS; DEFINITENESS;
D O I
10.1109/TSP.2009.2025811
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In statistical signal processing problems involving second-order information of data such as covariance estimation, spectral factorization, and optimal filtering, one often needs to test positivity of a real sequence obtained from the finite length of data as covariance estimates. In this correspondence, we present efficient time-domain algorithms for testing nonnegativity of real finite nonparametric and linearly parametric sequences as valid covariance estimates. For a parametric sequence, the algorithm searches entire parameter space to find a unique set of parameters for which the sequence is positive-definite. Examples show performance of the proposed algorithms versus direct use of DFT/FFT.
引用
收藏
页码:4579 / 4583
页数:5
相关论文
共 50 条