A NONPARAMETRIC TEST OF FIT OF A PARAMETRIC MODEL

被引:15
|
作者
KOZEK, AS
机构
[1] Institute of Computer Science, University of Wroclaw
关键词
LEAST SQUARES METHOD; MAXIMUM DEVIATION DISTRIBUTION; NONLINEAR REGRESSION; NONPARAMETRIC REGRESSION; PARAMETRIC REGRESSION; TEST OF FIT;
D O I
10.1016/0047-259X(91)90111-E
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a natural test of fit of a parametric regression model. The test is based on a comparison of a nonparametric kernel estimate of a regression function with its least-squares parametric estimate. Under the null hypothesis we derive approximations to the probability distribution functions of the test statistic. The approximations are exact with a power rate. Moreover, we prove the consistency of the test. © 1991.
引用
收藏
页码:66 / 75
页数:10
相关论文
共 50 条