An Efficient Method for Maintaining Diversity in Evolutionary Multi-objective Optimization

被引:0
|
作者
Zheng, Jinhua [1 ]
Li, Miqing [1 ]
机构
[1] Xiangtan Univ, Inst Informat Engn, Xiangtan 411105, Hunan, Peoples R China
关键词
D O I
10.1109/ICNC.2008.620
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diversity maintenance of solutions is a crucial part in multi-objective optimization. In this paper, a maintenance method which is based on minimum spanning tree is proposed. The proposed method defines a density estimation metric - Minimum Spanning Tree Crowding Distance (MSTCD). Moreover, information of degree of solution combined with MSTCD is employed to truncate population. From an extensive comparative study with three other methods on a number of two and three objective test problems, it is observed that the proposed algorithm has good performance in distribution.
引用
收藏
页码:462 / 467
页数:6
相关论文
共 50 条
  • [41] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758
  • [42] Weighted Preferences in Evolutionary Multi-objective Optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    [J]. AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 291 - +
  • [43] Multi-objective evolutionary computation and fuzzy optimization
    Jimenez, F.
    Cadenas, J. M.
    Sanchez, G.
    Gomez-Skarmeta, A. F.
    Verdegay, J. L.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2006, 43 (01) : 59 - 75
  • [44] Uniformity Assessment for Evolutionary Multi-Objective Optimization
    Li, Miqing
    Zheng, Jinhua
    Xiao, Guixia
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 625 - 632
  • [45] Noise handling in evolutionary multi-objective optimization
    Goh, C. K.
    Tan, K. C.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1339 - +
  • [46] Multi-objective evolutionary computation and fuzzy optimization
    Jiménez, F.
    Cadenas, J.M.
    Sánchez, G.
    Gómez-Skarmeta, A.F.
    Verdegay, J.L.
    [J]. International Journal of Approximate Reasoning, 2006, 43 (01): : 59 - 75
  • [47] Interleaving Guidance in Evolutionary Multi-Objective Optimization
    Lam Thu Bui
    Kalyanmoy Deb
    Hussein A.Abbass
    Daryl Essam
    [J]. Journal of Computer Science & Technology, 2008, 23 (01) : 44 - 63
  • [48] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [49] A study on multiform multi-objective evolutionary optimization
    Zhang, Liangjie
    Xie, Yuling
    Chen, Jianjun
    Feng, Liang
    Chen, Chao
    Liu, Kai
    [J]. MEMETIC COMPUTING, 2021, 13 (03) : 307 - 318
  • [50] On test functions for evolutionary multi-objective optimization
    Okabe, T
    Jin, YC
    Olhofer, M
    Sendhoff, B
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 792 - 802