Non-local continuum mechanics and fractional calculus

被引:152
|
作者
Lazopoulos, K. A. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Sci, Mech Div, GR-15773 Athens, Greece
关键词
elasticity; fractional calculus; non-local strain energy density; coexistence of phases;
D O I
10.1016/j.mechrescom.2006.05.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present work introduces fractional calculus into the continuum mechanics area describing non-local constitutive relations. Considering a one-dimensional body and assuming total stored energy depending not only upon the local strain but also upon a fractional derivative of the stain, an elastic model with non-local stress-strain behavior is introduced. Fractional calculus provides a natural framework for describing non-local constitutive relations and requires no assumptions for the interval of non-local influence. Furthermore, the proposed method works in finite intervals contrary to the existing theories requiring infinite domains. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:753 / 757
页数:5
相关论文
共 50 条
  • [41] Non-Local Seismo-Dynamics: A Fractional Approach
    Uchaikin, Vladimir
    Kozhemiakina, Elena
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [42] ON FRACTIONAL HEAT EQUATIONS WITH NON-LOCAL INITIAL CONDITIONS
    de Andrade, Bruno
    Cuevas, Claudio
    Soto, Herme
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 65 - 76
  • [43] A non-local fractional stress–strain gradient theory
    Zaher Rahimi
    Ghader Rezazadeh
    Wojciech Sumelka
    International Journal of Mechanics and Materials in Design, 2020, 16 : 265 - 278
  • [44] A NON-LOCAL PROBLEM FOR A DIFFERENTIAL EQUATION OF FRACTIONAL ORDER
    Misenheimer, Nick
    Kosmatov, Nickolai
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (2-3): : 155 - 161
  • [45] On fractional non-local bodies with variable length scale
    Sumelka, Wojciech
    MECHANICS RESEARCH COMMUNICATIONS, 2017, 86 : 5 - 10
  • [46] Non-local fractional derivatives. Discrete and continuous
    Abadias, Luciano
    De Leon-Contreras, Marta
    Torrea, Jose L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 734 - 755
  • [47] The continuum limit of non-local follow-the-leader models
    Holden, Helge
    Risebro, Nils Henrik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (04) : 1523 - 1539
  • [48] Non-local continuum modelling of steady, densegranular heap flows
    Liu, Daren
    Henann, David L.
    JOURNAL OF FLUID MECHANICS, 2017, 831 : 212 - 227
  • [49] Bifurcation and creep effects in a viscoelastic non-local damageable continuum
    Baxevanis, Theocharis
    Pijaudier-Cabot, Gilles
    Dufour, Frédéric
    European Journal of Mechanics, A/Solids, 1600, 27 (04): : 548 - 563
  • [50] A comparative analysis of the RC circuit with local and non-local fractional derivatives
    Rosales, J. J.
    Filoteo, J. D.
    Gonzalez, A.
    REVISTA MEXICANA DE FISICA, 2018, 64 (06) : 647 - 654