Non-local continuum mechanics and fractional calculus

被引:150
|
作者
Lazopoulos, K. A. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Sci, Mech Div, GR-15773 Athens, Greece
关键词
elasticity; fractional calculus; non-local strain energy density; coexistence of phases;
D O I
10.1016/j.mechrescom.2006.05.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present work introduces fractional calculus into the continuum mechanics area describing non-local constitutive relations. Considering a one-dimensional body and assuming total stored energy depending not only upon the local strain but also upon a fractional derivative of the stain, an elastic model with non-local stress-strain behavior is introduced. Fractional calculus provides a natural framework for describing non-local constitutive relations and requires no assumptions for the interval of non-local influence. Furthermore, the proposed method works in finite intervals contrary to the existing theories requiring infinite domains. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:753 / 757
页数:5
相关论文
共 50 条
  • [1] Fractional calculus in solid mechanics: local versus non-local approach
    Carpinteri, Alberto
    Cornetti, Pietro
    Sapora, Alberto
    Di Paola, Mario
    Zingales, Massimiliano
    [J]. PHYSICA SCRIPTA, 2009, T136
  • [2] Long-range cohesive interactions of non-local continuum faced by fractional calculus
    Di Paola, Mario
    Zingales, Massimiliano
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (21) : 5642 - 5659
  • [3] Non-local gradients in bounded domains motivated by continuum mechanics: Fundamental theorem of calculus and embeddings
    Bellido, Jose Carlos
    Cueto, Javier
    Mora-Corral, Carlos
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [4] A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics
    W. Sumelka
    R. Zaera
    J. Fernández-Sáez
    [J]. Meccanica, 2015, 50 : 2309 - 2323
  • [5] A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics
    Sumelka, W.
    Zaera, R.
    Fernandez-Saez, J.
    [J]. MECCANICA, 2015, 50 (09) : 2309 - 2323
  • [6] A morphing strategy to couple non-local to local continuum mechanics
    Lubineau, Gilles
    Azdoud, Yan
    Han, Fei
    Rey, Christian
    Askari, Abe
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (06) : 1088 - 1102
  • [7] Dynamics of non-local systems handled by fractional calculus
    Cottone, Giulio
    Di Paola, Mario
    Zingales, Massimiliano
    [J]. PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 81 - 89
  • [8] Fractional calculus for continuum mechanics - anisotropic non-locality
    Sumelka, W.
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2016, 64 (02) : 361 - 372
  • [9] Fractional mechanical model for the dynamics of non-local continuum
    Cottone, G.
    Paola, M. Di
    Zingales, M.
    [J]. Lecture Notes in Electrical Engineering, 2009, 11 : 389 - 423
  • [10] General Non-Local Continuum Mechanics: Derivation of Balance Equations
    Tarasov, Vasily E.
    [J]. MATHEMATICS, 2022, 10 (09)