Deep learning in deep time

被引:1
|
作者
White, Alexander E. [1 ,2 ]
机构
[1] Smithsonian Inst, Data Sci Lab, Off Chief Informat Officer, Washington, DC 20013 USA
[2] Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA
关键词
POLLEN;
D O I
10.1073/pnas.2020870117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:29268 / 29270
页数:3
相关论文
共 50 条
  • [21] DEEP TROUBLE FOR DEEP LEARNING
    Heaven, Douglas
    NATURE, 2019, 574 (7777) : 163 - 166
  • [22] Deep, deep learning with BART
    Blumenthal, Moritz
    Luo, Guanxiong
    Schilling, Martin
    Holme, H. Christian M.
    Uecker, Martin
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (02) : 678 - 693
  • [23] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [24] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    Intelligent Service Robotics, 2021, 14 : 773 - 805
  • [25] 'Deep gene' and 'deep time'
    Palevitz, BA
    SCIENTIST, 2001, 15 (05): : 12 - 12
  • [26] Ensemble Deep TimeNet : An Ensemble Learning Approach with Deep Neural Networks for Time Series
    Pathak, Sudipta
    Cai, Xingyu
    Rajasekaran, Sanguthevar
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2018,
  • [27] Deep insights into MCI diagnosis: A comparative deep learning analysis of EEG time series
    Seker, Mesut
    Ozerdem, Mehmet Sirac
    JOURNAL OF NEUROSCIENCE METHODS, 2024, 403
  • [28] Are Deep Learning Models Practically Good as Promised? A Strategic Comparison of Deep Learning Models for Time Series Forecasting
    Ouyang, Zuokun
    Ravier, Philippe
    Jabloun, Meryem
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1477 - 1481
  • [29] Deep Lake: a Lakehouse for Deep Learning
    Hambardzumyan, Sasun
    Tuli, Abhinav
    Ghukasyan, Levon
    Rahman, Fariz
    Topchyan, Hrant
    Isayan, David
    McQuade, Mark
    Harutyunyan, Mikayel
    Hakobyan, Tatevik
    Stranic, Ivo
    Buniatyan, Davit
    arXiv, 2022,
  • [30] Facebook Deep learning= Deep Attentioning
    肖婧
    商学院, 2015, (01) : 60 - 61