Queues, stacks, and transcendentality at the transition to chaos

被引:8
|
作者
Moore, C
Lakdawala, P
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] Homi Bhabha Ctr Sci Educ, Bombay 400088, Maharashtra, India
来源
PHYSICA D | 2000年 / 135卷 / 1-2期
基金
美国国家科学基金会;
关键词
queues; stacks; dynamical phase transitions; automata; formal languages; memory;
D O I
10.1016/S0167-2789(99)00126-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the one-humped map at the period-doubling transition to chaos, and ask whether its long-term memory is stack-like (last-in, first-out) or queue-like (first-in, first-out). We show that it can be recognized by a real-time automaton with one queue, or two stacks, and give several new grammatical characterizations of it. We argue that its memory has a queue-like character, since a single stack does not suffice. We also show that its dynamical zeta function, generating function and growth function are transcendental. The same results hold for any period-multiplying cascade. We suggest that transcendentality might be a sign of dynamical phase transitions in other systems as well. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:24 / 40
页数:17
相关论文
共 50 条
  • [41] Transition to chaos in thermocapillary convection
    Zhu, Peng
    Duan, Li
    Kang, Qi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 57 (02) : 457 - 464
  • [42] OSCILLATORY REACTIONS AND THE TRANSITION TO CHAOS
    EPSTEIN, IR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 3 - PHYS
  • [43] Transition to phase synchronization of chaos
    Rosa, E
    Ott, E
    Hess, MH
    PHYSICAL REVIEW LETTERS, 1998, 80 (08) : 1642 - 1645
  • [44] TRANSITION TO CHAOS IN THE DUFFING OSCILLATOR
    NOVAK, S
    FREHLICH, RG
    PHYSICAL REVIEW A, 1982, 26 (06): : 3660 - 3663
  • [45] CHAOS-HYPERCHAOS TRANSITION
    KAPITANIAK, T
    THYLWE, KE
    COHEN, I
    WOJEWODA, J
    CHAOS SOLITONS & FRACTALS, 1995, 5 (10) : 2003 - 2011
  • [46] The Transition to Chaos of Pendulum Systems
    Litak, Grzegorz
    Borowiec, Marek
    Dabek, Krzysztof
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [47] Generic, hard transition to chaos
    Lopez-Rebollal, O.
    Sanmartin, J.R.
    Physica D: Nonlinear Phenomena, 1995, 89 (1-2):
  • [48] Transition to doubly diffusive chaos
    Beaume, Cedric
    PHYSICAL REVIEW FLUIDS, 2020, 5 (10)
  • [49] INTERMITTANCY IN THE TRANSITION TO OPTICAL CHAOS
    MOLONEY, JV
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1753 - 1753
  • [50] Renormalization structure of the transition to chaos
    Peterman, A
    Zichichi, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1996, 109 (03): : 341 - 355