Surface modification of Fe3O4 nanoparticles and their magnetic properties

被引:16
|
作者
Yan, Hao [1 ]
Zhang, Jian-cheng [1 ]
You, Chen-xia [1 ]
Song, Zhen-wei [1 ]
Yu, Ben-wei [1 ]
Shen, Yue [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
surfactant; magnetite nanoparticle; hydrothermal; particle size; dispersion; magnetism; ULTRASOUND RADIATION; NANOCRYSTALS; PARTICLES;
D O I
10.1016/S1674-4799(09)60038-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fe3O4 magnetic nanoparticles were synthesized by the hydrothermal method, and the influences of the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on the particles were investigated. The structure, morphology, and magnetic properties of the products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM). It is confirmed that the as-prepared nanoparticles have been modified by using the surfactant during the synthesis process. The amount of the surfactant has an effect on the size, the dispersal, and the magnetic properties of the particles. Besides, the mechanisms of the influences were also discussed.
引用
收藏
页码:226 / 229
页数:4
相关论文
共 50 条
  • [31] Size selection of Fe3O4 nanoparticles and their magnetic properties
    Sasaki, Hideaki
    Perez, Oscar Juan Perales
    Jeyadevan, Balachandran
    Tohji, Kazuyuki
    Kasuya, Atsuo
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49 (02): : 135 - 140
  • [32] Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption
    Zhao, SY
    Lee, DK
    Kim, CW
    Cha, RG
    Kim, YH
    Kang, YS
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2006, 27 (02) : 237 - 242
  • [33] Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption
    Department of Chemistry, Pukyong National University, Busan 608-737, Korea, Republic of
    不详
    Bull. Korean Chem. Soc., 2006, 2 (237-242):
  • [34] Effect of Surface Modification on Cellular Internalization of Fe3O4 Nanoparticles in Strong Static Magnetic Field
    Lei, Wang
    Min, Wang
    Hui, Dal
    Yun, Liu
    An, Xu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (07) : 5184 - 5192
  • [35] High field surface magnetic study of Fe3O4 nanoparticles
    Kihal, A.
    Fillion, G.
    Bouzabata, B.
    Barbara, B.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (03): : 604 - 614
  • [36] Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles
    Liu, Shixiang
    Yu, Bing
    Wang, Song
    Shen, Youqing
    Cong, Hailin
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2020, 281
  • [37] On the magnetic aggregation of Fe3O4 nanoparticles
    Karvelas, E. G.
    Lampropoulos, N. K.
    Benos, L. T.
    Karakasidis, T.
    Sarris, I. E.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 198
  • [38] Magnetic monodisperse Fe3O4 nanoparticles
    Si, SF
    Li, CH
    Wang, X
    Yu, DP
    Peng, Q
    Li, YD
    CRYSTAL GROWTH & DESIGN, 2005, 5 (02) : 391 - 393
  • [39] Highly dispersible Fe3O4 nanoparticles via anionic surface modification
    Hur, Jae Uk
    Choi, Jae Seok
    Choi, Sung-Churl
    An, Gye Seok
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2020, 57 (01) : 80 - 84
  • [40] Effect of Fe3O4 content and microwave reaction time on the properties of Fe3O4/ZnO magnetic nanoparticles
    Liu, Kun
    Qin, Yuelong
    Muhammad, Yaseen
    Zhu, Ying
    Tang, Rui
    Chen, Ninghua
    Shi, Huazhen
    Zhang, Hanbing
    Tong, Zhangfa
    Yu, Binbin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 790 - 799