Numerical simulation of hydraulic fracture propagation in shale gas reservoir

被引:62
|
作者
Guo, Tiankui [1 ]
Zhang, Shicheng [2 ]
Zou, Yushi [2 ]
Xiao, Bo [2 ]
机构
[1] China Univ Petr, Coll Petr Engn, Huadong 266580, Peoples R China
[2] China Univ Petr, Coll Petr Engn, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale; Fracture propagation; Numerical simulation; Stress; Natural fracture; CRACK-GROWTH;
D O I
10.1016/j.jngse.2015.07.024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
On the basis of damage mechanics, a 2D fracture propagation model for seepage-stress-damage coupling in multi-fracture shales was established. Numerical simulations of hydraulic fracture propagation in the presence of natural fractures were carried out, with the use of mechanical parameters of shale reservoirs. The results showed that when hydraulic fractures encountered natural fractures in a shale reservoir, the morphology of fracture propagation was jointly affected by the properties of natural fractures (permeability and mechanical properties of rocks), approaching angle, horizontal stress difference, and flow rate of fracturing fluids. At a small horizontal stress difference, or low approaching angle, or small friction coefficient, natural fractures had increased potential to be damaged due to shear and tension. In such cases, the hydraulic fractures tended to propagate along the natural fractures. As the flow rate of fracturing fluid increased and the width of hydraulic fractures expanded, branch fractures formed easily when the net pressure exceeded the sum of horizontal stress difference and tensile strength of the rocks in which natural fractures with approaching angle smaller than 60 degrees existed. It is seen, a high flow rate will increase the complexity of fracture network. However, when a large number of natural fractures with approaching angles greater than 60 degrees existed, a large flow rate generally led to propagation of hydraulic fractures beyond natural fractures, which was not favored. Hence, an appropriate flow rate should be selected based on the orientations of natural fractures and hydraulic fractures. At the early stage of hydraulic fracturing, a low flow rate was favorable for the initiation of natural fractures and the growth of complexity of regional fractures near the well. Later, a higher flow rate facilitated a further propagation of hydraulic fractures into the depth of reservoir, thus forming a network of fractures. The underlying control mechanism of flow rate and net pressure on the formation of fracture network still requires clarification. The bending degree of the fracture propagation path depended on the ratio of net pressure to stress difference at a distant point as well as on the spacing between fractures. When the horizontal stress difference (<9 MPa) or coefficient of horizontal stress difference (<0.25) was low, the ratio of net pressure to stress difference was high. In this case, the fracture-induced stress obtained an enhanced significance, while the interactions of hydraulic fractures intensified, leading to a non-planar propagation of fractures. In addition, a smaller spacing between fractures caused intensified interactions of hydraulic fractures, so the propagation path altered more easily. This work contributes to the prediction of morphology of fracture propagation in unconventional oil and gas reservoirs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:847 / 856
页数:10
相关论文
共 50 条
  • [22] Phase field model for hydraulic fracture propagation in porous medium and numerical simulation analysis of hydraulic fracture propagation in a layered reservoir
    Yi L.-P.
    Yang C.-X.
    Chen R.
    Zhu J.-Y.
    Zhu X.-H.
    Yang Z.-Z.
    Li X.-G.
    Arabian Journal of Geosciences, 2021, 14 (16)
  • [23] Peridynamic simulation on hydraulic fracture propagation in shale formation
    Li, Chengxuan
    Wang, J. G.
    ENGINEERING FRACTURE MECHANICS, 2021, 258
  • [24] Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems
    Kim, Jihoon
    Moridis, George J.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2015, 76 : 127 - 137
  • [25] Numerical investigation of hydraulic fracture propagation in the glutenite reservoir
    Li, MingZhong
    Tang, ShuKai
    Guo, Tiankui
    Qi, Minhui
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (05) : 2124 - 2138
  • [26] Numerical simulation study on hydraulic fracture propagation in heavy oil reservoir with THM coupling
    Hu, Yongquan
    Wang, Qiang
    Zhao, Jinzhou
    Guo, Ziyi
    Zhang, Yong
    Mao, Chun
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2020, 24 (02) : 179 - 204
  • [27] Production performance simulation of a horizontal well in a shale gas reservoir considering the propagation of hydraulic fractures
    Zhang, Rui-Han
    Chen, Man
    Tang, Hui-Ying
    Xiao, Hong-Sha
    Zhang, De-Liang
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 221
  • [28] Numerical Simulation of Hydraulic Fracture Crack Propagation
    Akulich, A. V.
    Zvyagin, A. V.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2008, 63 (01) : 6 - 12
  • [29] Numerical simulation of hydraulic fracture crack propagation
    Akulich A.V.
    Zvyagin A.V.
    Moscow University Mechanics Bulletin, 2008, 63 (1) : 6 - 12
  • [30] Study on numerical simulation ot ettect on natural fractures to hydraulic fracture propagation in shale reservoirs
    Shen Y.
    Feng Z.
    Zhou D.
    Ma Y.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2021, 49 (08): : 195 - 202