SYMBOLIC COMPUTATION OF SOME NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

被引:0
|
作者
Biswas, A. [1 ,2 ]
Bhrawy, A. H. [2 ,3 ]
Abdelkawy, M. A. [3 ]
Alshaery, A. A. [4 ]
Hilal, E. M. [4 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf 62511, Egypt
[4] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21589, Saudi Arabia
来源
ROMANIAN JOURNAL OF PHYSICS | 2014年 / 59卷 / 5-6期
关键词
G/G-expansion method; modified Riemann-Liouville fractional derivative; double sine-Poisson equation; double sinh-Poisson equation; Liouville equation; KADOMTSEV-PETVIASHVILI EQUATION; TRAVELING-WAVE SOLUTIONS; POWER-LAW NONLINEARITY; ELLIPTIC FUNCTION-METHOD; CHIRAL SOLITONS; KDV EQUATION; WATER WAVES; SINE-COSINE; TANH-COTH;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies a few fractional nonlinear equations from mathematical physics. The fractional derivatives are in the sense of modified Riemann-Liouville fractional derivative. The G/G-expansion method is applied to retrieve solutions to these equations. Several forms of solutions are obtained that are listed in this paper.
引用
下载
收藏
页码:433 / 442
页数:10
相关论文
共 50 条
  • [21] Symbolic computation for the qualitative theory of differential equations
    Huang, Bo
    Niu, Wei
    Wang, Dongming
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (06) : 2478 - 2504
  • [22] Symbolic computation for the qualitative theory of differential equations
    Bo Huang
    Wei Niu
    Dongming Wang
    Acta Mathematica Scientia, 2022, 42 : 2478 - 2504
  • [23] Symbolic computation and differential equations: Lie symmetries
    Carminati, J
    Vu, K
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (01) : 95 - 116
  • [24] Application of Symbolic Computation in Nonlinear Evolution Equations
    Zhang, Yuanyuan
    ICAIE 2009: PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND EDUCATION, VOLS 1 AND 2, 2009, : 362 - 364
  • [25] Optical solitons of some fractional differential equations in nonlinear optics
    Zhou, Qin
    Sonmezoglu, Abdullah
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    JOURNAL OF MODERN OPTICS, 2017, 64 (21) : 2345 - 2349
  • [26] On Nodal Properties for Some Nonlinear Conformable Fractional Differential Equations
    Wang, Wei-Chuan
    Cheng, Yan-Hsiou
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (04): : 847 - 865
  • [27] Some Existence Results for a System of Nonlinear Fractional Differential Equations
    Ameer, Eskandar
    Aydi, Hassen
    Isik, Huseyin
    Nazam, Muhammad
    Parvaneh, Vahid
    Arshad, Muhammad
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [28] Using symbolic computation to construct travelling wave solutions to nonlinear partial differential equations
    Li, W
    Xie, FD
    CHINESE PHYSICS, 2004, 13 (10): : 1639 - 1643
  • [29] Symbolic Computation and Lie Symmetry Groups for Two Nonlinear Differential-Difference Equations
    Xuan Hengnong
    Sun Mingming
    He Tao
    CHINESE JOURNAL OF ELECTRONICS, 2010, 19 (03): : 495 - 498
  • [30] Symbolic computation of Jacobi elliptic function solutions to nonlinear differential-difference equations
    Yong, Xuelin
    Zeng, Xin
    Zhang, Zhiyong
    Chen, Yufu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1107 - 1114