Approximation algorithms for time-dependent orienteering

被引:56
|
作者
Fomin, FV
Lingas, A
机构
[1] Lund Univ, Dept Comp Sci, S-22100 Lund, Sweden
[2] Graduiertenkolleg PaSCo, Heinz Nixdorf Inst, D-33102 Paderborn, Germany
[3] Univ Gesamthsch Paderborn, D-33102 Paderborn, Germany
关键词
time-depending orienteering; traveling salesman; approximation algorithms; network design;
D O I
10.1016/S0020-0190(01)00313-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The time-dependent orienteering problem is dual to the time-dependent traveling salesman problem. It consists of visiting a maximum number of sites within a given deadline. The traveling time between two sites is in general dependent on the starting time. For any epsilon > 0, we provide a (2 + epsilon)-approximation algorithm for the time-dependent orienteering problem which runs in polynomial time if the ratio between the maximum and minimum traveling time between any two sites is constant. No prior upper approximation bounds were known for this time-dependent problem. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [21] APPROXIMATION OF TIME-DEPENDENT FREE BOUNDARIES
    FAGE, D
    NUMERISCHE MATHEMATIK, 1982, 40 (02) : 179 - 199
  • [22] Genetic algorithms in time-dependent environments
    Ronnewinkel, C
    Wilke, CO
    Martinetz, T
    THEORETICAL ASPECTS OF EVOLUTIONARY COMPUTING, 2001, : 261 - 285
  • [23] Scenic Routes Now: Efficiently Solving the Time-Dependent Arc Orienteering Problem
    Lu, Ying
    Josse, Gregor
    Emrich, Tobias
    Demiryurek, Ugur
    Renz, Matthias
    Shahabi, Cyrus
    Schubert, Matthias
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 487 - 496
  • [24] Approximation of time-dependent viscoelastic fluid flow: SUPG approximation
    Ervin, VJ
    Miles, WW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) : 457 - 486
  • [25] Approximation algorithms for orienteering and discounted-reward TSP
    Blum, Avrim
    Chawla, Shuchi
    Karger, David R.
    Lane, Terran
    Meyerson, Adam
    Minkoff, Maria
    SIAM JOURNAL ON COMPUTING, 2007, 37 (02) : 653 - 670
  • [26] Approximation algorithms for orienteering and discounted-reward TSP
    Blum, A
    Chawla, S
    Karger, DR
    Lane, T
    Meyerson, A
    Minkoff, M
    44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, : 46 - 55
  • [27] Time-Dependent Gutzwiller Approximation: Interplay with Phonons
    G. Seibold
    J. Bünemann
    J. Lorenzana
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 929 - 931
  • [28] Time-dependent Gutzwiller approximation for the Hubbard model
    Seibold, G
    Lorenzana, J
    PHYSICAL REVIEW LETTERS, 2001, 86 (12) : 2605 - 2608
  • [29] A TIME-DEPENDENT BORN-OPPENHEIMER APPROXIMATION
    HAGEDORN, GA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (01) : 1 - 19
  • [30] Vertex corrections and time-dependent GW approximation
    Karlsson, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (26): : 3381 - 3397