Splitting-up scheme for the stochastic Cahn-Hilliard Navier-Stokes model

被引:2
|
作者
Deugoue, Gabriel [1 ]
Moghomye, Boris Jidjou [1 ]
Medjo, Theodore Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, MMC, Dept Math, Miami, FL 33199 USA
关键词
Stochastic Navier-Stokes; Cahn-Hilliard; weak martingale solutions; splitting-up method; Q-Wiener process; compactness; PHASE-FIELD MODEL; DIFFERENTIAL-EQUATIONS; APPROXIMATION; CONVERGENCE; FLUID; ATTRACTOR; MIXTURE;
D O I
10.1142/S0219493721500052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a stochastic Cahn-Hilliard Navier-Stokes system in a bounded domain of d, d = 2, 3. The system models the evolution of an incompressible isothermal mixture of binary fluids under the influence of stochastic external forces. We prove the existence of a global weak martingale solution. The proof is based on the splitting-up method as well as some compactness method.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] A unified framework for Navier-Stokes Cahn-Hilliard models with non-matching densities
    ten Eikelder, M. F. P.
    van der Zee, K. G.
    Akkerman, I.
    Schillinger, D.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (01): : 175 - 221
  • [22] Advected phase-field method for bounded solution of the Cahn-Hilliard Navier-Stokes equations
    Dadvand, Abdolrahman
    Bagheri, Milad
    Samkhaniani, Nima
    Marschall, Holger
    Woerner, Martin
    PHYSICS OF FLUIDS, 2021, 33 (05)
  • [23] Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration
    Vignal, Philippe
    Sarmiento, Adel
    Cortes, Adriano M. A.
    Dalcin, Lisandro
    Calo, Victor. M.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 934 - 943
  • [24] Energy identity for the incompressible Cahn-Hilliard/Navier-Stokes system with non-degenerate mobility
    Georgiadis, Stefanos
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [25] High-order discontinuous Galerkin approximation for a three-phase incompressible Navier-Stokes/Cahn-Hilliard model
    Manzanero, Juan
    Redondo, Carlos
    Chavez-Modena, Miguel
    Rubio, Gonzalo
    Valero, Eusebio
    Gomez-Alvarez, Susana
    Rivero-Jimenez, Angel
    COMPUTERS & FLUIDS, 2022, 244
  • [26] On a fractional step-splitting scheme for the Cahn-Hilliard equation
    Aderogba, A. A.
    Chapwanya, M.
    Djoko, J. K.
    ENGINEERING COMPUTATIONS, 2014, 31 (07) : 1151 - 1168
  • [27] Stochastic Cahn-Hilliard equation
    DaPrato, G
    Debussche, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) : 241 - 263
  • [29] ON THE STOCHASTIC CAHN-HILLIARD EQUATION
    ELEZOVIC, N
    MIKELIC, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (12) : 1169 - 1200
  • [30] A CAHN-HILLIARD-NAVIER-STOKES MODEL WITH DELAYS
    Medjo, T. Tachim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (08): : 2663 - 2685