Splitting-up scheme for the stochastic Cahn-Hilliard Navier-Stokes model

被引:2
|
作者
Deugoue, Gabriel [1 ]
Moghomye, Boris Jidjou [1 ]
Medjo, Theodore Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, MMC, Dept Math, Miami, FL 33199 USA
关键词
Stochastic Navier-Stokes; Cahn-Hilliard; weak martingale solutions; splitting-up method; Q-Wiener process; compactness; PHASE-FIELD MODEL; DIFFERENTIAL-EQUATIONS; APPROXIMATION; CONVERGENCE; FLUID; ATTRACTOR; MIXTURE;
D O I
10.1142/S0219493721500052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a stochastic Cahn-Hilliard Navier-Stokes system in a bounded domain of d, d = 2, 3. The system models the evolution of an incompressible isothermal mixture of binary fluids under the influence of stochastic external forces. We prove the existence of a global weak martingale solution. The proof is based on the splitting-up method as well as some compactness method.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Existence of a solution to the stochastic nonlocal Cahn-Hilliard Navier-Stokes model via a splitting-up method
    Deugoue, G.
    Moghomye, B. Jidjou
    Medjo, T. Tachim
    NONLINEARITY, 2020, 33 (07) : 3424 - 3469
  • [2] An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model
    Minjeaud, Sebastian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 584 - 618
  • [3] Preconditioning of a Coupled Cahn-Hilliard Navier-Stokes System
    Bosch, Jessica
    Kahle, Christian
    Stoll, Martin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (02) : 603 - 628
  • [4] On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility
    Abels, Helmut
    Depner, Daniel
    Garcke, Harald
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06): : 1175 - 1190
  • [5] Cahn-Hilliard/Navier-Stokes Model for the Simulation of Three-Phase Flows
    Boyer, F.
    Lapuerta, C.
    Minjeaud, S.
    Piar, B.
    Quintard, M.
    TRANSPORT IN POROUS MEDIA, 2010, 82 (03) : 463 - 483
  • [6] Upscaling of a Cahn-Hilliard Navier-Stokes model with precipitation and dissolution in a thin strip
    von Wolff, Lars
    Pop, Iuliu Sorin
    JOURNAL OF FLUID MECHANICS, 2022, 941
  • [7] Solution to a stochastic 3D nonlocal Cahn–Hilliard–Navier–Stokes model with shear dependent viscosity via a splitting-up method
    G. Deugoué
    B. Jidjou Moghomye
    T. Tachim Medjo
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [8] Energy equality for weak solutions to Cahn-Hilliard/Navier-Stokes equations
    Liang, Zhilei
    Niu, Qiang
    Shuai, Jiangyu
    APPLIED MATHEMATICS LETTERS, 2020, 99
  • [9] The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids
    Magaletti, F.
    Picano, F.
    Chinappi, M.
    Marino, L.
    Casciola, C. M.
    JOURNAL OF FLUID MECHANICS, 2013, 714 : 95 - 126
  • [10] A Simple Parallel Solution Method for the Navier-Stokes Cahn-Hilliard Equations
    Adam, Nadja
    Franke, Florian
    Aland, Sebastian
    MATHEMATICS, 2020, 8 (08)