Decomposing hypergraphs into simple hypertrees

被引:5
|
作者
Yuster, R [1 ]
机构
[1] Univ Haifa, Dept Math, ORANIM, IL-36006 Tivon, Israel
关键词
AMS Subject Classification (1991) Classes:  05C65, 05C70;
D O I
10.1007/s004930070036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a simple k-uniform hypertree with t edges. It is shown that if H is any k-uniform hypergraph with n vertices and with minimum degree at least n(k-1)/2(k-1)(k-1)!(1+o(1)), and the number of edges of H is a multiple of t then H has a T-decomposition, This result is asymptotically best possible for all simple hypertrees with at least two edges.
引用
收藏
页码:119 / 140
页数:22
相关论文
共 50 条
  • [21] THE CHROMATIC INDEX OF SIMPLE HYPERGRAPHS
    FUREDI, Z
    GRAPHS AND COMBINATORICS, 1986, 2 (01) : 89 - 92
  • [22] Chromatic index of simple hypergraphs
    Zhang, Guo-Hui
    Skinner, Brett
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [23] Randomly coloring simple hypergraphs
    Frieze, Alan
    Melsted, Pall
    INFORMATION PROCESSING LETTERS, 2011, 111 (17) : 848 - 853
  • [24] Decomposing complete edge-chromatic graphs and hypergraphs. Revisited
    Gurvich, Vladimir
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3069 - 3085
  • [25] Decomposing a simple polygon into trapezoids
    Li, Fajie
    Klette, Reinhard
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 726 - 733
  • [26] On the Number of Independent Sets in Simple Hypergraphs
    Balobanov, A. E.
    Shabanov, D. A.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 33 - 41
  • [27] On the Number of Independent Sets in Simple Hypergraphs
    A. E. Balobanov
    D. A. Shabanov
    Mathematical Notes, 2018, 103 : 33 - 41
  • [28] Decomposing simple permutations, with enumerative consequences
    Robert Brignall
    Sophie Huczynska
    Vincent Vatter
    Combinatorica, 2008, 28 : 385 - 400
  • [29] Hypertrees
    Nieminen, J
    Peltola, M
    APPLIED MATHEMATICS LETTERS, 1999, 12 (02) : 35 - 38
  • [30] Decomposing polynomial systems into simple systems
    Wang, DM
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 25 (03) : 295 - 314