Computing orbit period in max-min algebra

被引:21
|
作者
Gavalec, M [1 ]
机构
[1] Tech Univ, Fac Elect Engn & Informat, Dept Math, Kosice 04213, Slovakia
关键词
period of a matrix; orbit of a vector; max-min algebra; NP-completeness;
D O I
10.1016/S0166-218X(99)00174-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Periodicity of vector orbits in max-min algebra is studied. It is proved that computing the coordinate-orbit period is NP-hard, while the orbit period can be computed in O(n(4)) time. A related problem of maximum sequence period is shown to be NP-complete. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 65
页数:17
相关论文
共 50 条
  • [31] Min-max and max-min graph saturation parameters
    Sudha, S.
    Arumugam, S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 943 - 947
  • [32] MAX-MIN PURSUIT GAME
    HEYMANN, M
    PACHTER, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 70 (02) : 430 - 444
  • [33] Max-Min Greedy Matching
    Eden, Alon
    Feige, Uriel
    Feldman, Michal
    [J]. PROCEEDINGS OF THE 14TH WORKSHOP ON THE ECONOMICS OF NETWORKS, SYSTEMS AND COMPUTATION (NETECON '19), 2019,
  • [34] Max-Min Grouped Bandits
    Wang, Zhenlin
    Scarlett, Jonathan
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8603 - 8611
  • [35] Max-min dispersion on a line
    Araki, Tetsuya
    Nakano, Shin-ichi
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (03) : 1824 - 1830
  • [36] Max-Min Dispersion on a Line
    Araki, Tetsuya
    Nakano, Shin-ichi
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 672 - 678
  • [37] LINEAR MAX-MIN PROGRAMMING
    POSNER, ME
    WU, CT
    [J]. MATHEMATICAL PROGRAMMING, 1981, 20 (02) : 166 - 172
  • [38] MAXIMAL SOLUTIONS OF TWO-SIDED LINEAR SYSTEMS IN MAX-MIN ALGEBRA
    Kabalek, Pavel
    Pozdilkova, Alena
    [J]. KYBERNETIKA, 2010, 46 (03) : 501 - 512
  • [39] NONCONVEX MAX-MIN PROBLEM
    FALK, JE
    HOFFMAN, K
    [J]. NAVAL RESEARCH LOGISTICS, 1977, 24 (03) : 441 - 450
  • [40] On minimization of max-min functions
    Bagirov, AM
    Rubinov, AM
    [J]. Optimization And Control With Applications, 2005, 96 : 3 - 33