EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction

被引:15
|
作者
Wang, Honglei [1 ,2 ,3 ]
Liu, Hui [1 ,2 ]
Huang, Tao [2 ]
Li, Gangshen [1 ,2 ]
Zhang, Lin [1 ,2 ]
Sun, Yanjing [1 ,2 ]
机构
[1] China Univ Min & Technol, Engn Res Ctr Intelligent Control Underground Spac, Minist Educ, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] Xuzhou Coll Ind Technol, Sch Informat Engn, Xuzhou 221400, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
RNA modification site; Deep learning; Natural language processing; Predictor; N-1-METHYLADENOSINE; N-6-METHYLADENOSINE; LANDSCAPE; RMBASE;
D O I
10.1186/s12859-022-04756-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Recent research recommends that epi-transcriptome regulation through post-transcriptional RNA modifications is essential for all sorts of RNA. Exact identification of RNA modification is vital for understanding their purposes and regulatory mechanisms. However, traditional experimental methods of identifying RNA modification sites are relatively complicated, time-consuming, and laborious. Machine learning approaches have been applied in the procedures of RNA sequence features extraction and classification in a computational way, which may supplement experimental approaches more efficiently. Recently, convolutional neural network (CNN) and long short-term memory (LSTM) have been demonstrated achievements in modification site prediction on account of their powerful functions in representation learning. However, CNN can learn the local response from the spatial data but cannot learn sequential correlations. And LSTM is specialized for sequential modeling and can access both the contextual representation but lacks spatial data extraction compared with CNN. There is strong motivation to construct a prediction framework using natural language processing (NLP), deep learning (DL) for these reasons. Results: This study presents an ensemble multiscale deep learning predictor (EMDLP) to identify RNA methylation sites in an NLP and DL way. It organically combines the dilated convolution and Bidirectional LSTM (BiLSTM), which helps to take better advantage of the local and global information for site prediction. The first step of EMDLP is to represent the RNA sequences in an NLP way. Thus, three encodings, e.g., RNA word embedding, One-hot encoding, and RGloVe, which is an improved learning method of word vector representation based on GloVe, are adopted to decipher sites from the viewpoints of the local and global information. Then, a dilated convolutional Bidirectional LSTM network (DCB) model is constructed with the dilated convolutional neural network (DCNN) followed by BiLSTM to extract potential contributing features for methylation site prediction. Finally, these three encoding methods are integrated by a soft vote to obtain better predictive performance. Experiment results on m(1)A and m(6)A reveal that the area under the receiver operating characteristic(AUROC) of EMDLP obtains respectively 95.56%, 85.24%, and outperforms the state-of-the-art models. To maximize user convenience, a user-friendly webserver for EMDLP was publicly available at http://www.labiip.net/EMDLP/index.php (http://47.104.130.81/EMDLP/index.php). Conclusions: We developed a predictor for m(1)A and m(6)A methylation sites.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Deep learning for RNA structure prediction
    Wang, Jiuming
    Fan, Yimin
    Hong, Liang
    Hu, Zhihang
    Li, Yu
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 91
  • [22] Deep learning boosts RNA prediction
    Jie Pan
    Nature Computational Science, 2021, 1 : 564 - 564
  • [23] A novel ensemble deep learning model for stock prediction based on stock prices and news
    Li, Yang
    Pan, Yi
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 13 (02) : 139 - 149
  • [24] A deep learning-based multi-model ensemble method for cancer prediction
    Xiao, Yawen
    Wu, Jun
    Lin, Zongli
    Zhao, Xiaodong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 153 : 1 - 9
  • [25] A novel ensemble deep learning model for stock prediction based on stock prices and news
    Yang Li
    Yi Pan
    International Journal of Data Science and Analytics, 2022, 13 : 139 - 149
  • [26] Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning
    Chen, Chao
    Liu, Hui
    ADVANCED ENGINEERING INFORMATICS, 2021, 48
  • [27] Deep Ensemble Learning Model for Long-Term Travel Time Prediction on Highways
    Ho, Ming-Chu
    Chen, Yu-Cing
    Hung, Chih-Chieh
    Wu, Hsien-Chu
    2021 IEEE FOURTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2021), 2021, : 129 - 130
  • [28] A water quality prediction model based on signal decomposition and ensemble deep learning techniques
    Dong, Jinghan
    Wang, Zhaocai
    Wu, Junhao
    Huang, Jinghan
    Zhang, Can
    WATER SCIENCE AND TECHNOLOGY, 2023, 88 (10) : 2611 - 2632
  • [29] Design and Development of IoT and Deep Ensemble Learning Based Model for Disease Monitoring and Prediction
    Swamy, Mareeswari Venkatachala Appa
    Periyasamy, Jayalakshmi
    Thangavel, Muthamilselvan
    Khan, Surbhi B.
    Almusharraf, Ahlam
    Santhanam, Prasanna
    Ramaraj, Vijayan
    Elsisi, Mahmoud
    DIAGNOSTICS, 2023, 13 (11)
  • [30] Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data
    Gutierrez-Osorio, Camilo
    Gonzalez, Fabio A.
    Augusto Pedraza, Cesar
    COMPUTERS, 2022, 11 (09)