Topological Degree Methods for Partial Differential Operators in Generalized Sobolev Spaces

被引:1
|
作者
Hammou, Mustapha Ait [1 ]
Azroul, Elhoussine [1 ]
Lahmi, Badr [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Dept Math, Fes, Morocco
来源
关键词
Partial differential operators; General divergence form; Topological Degree; Generalized Sobolev spaces; MAPPINGS;
D O I
10.5269/bspm.39179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to prove, by using the topological degree methods, the existence of solutions for nonlinear elliptic equation Au = f where Au = Sigma(vertical bar alpha vertical bar<m) (-1)(vertical bar alpha vertical bar)D(alpha)A(alpha)(x, u, del u, ..., del(m)u) is partial differential operators of general divergence form and f is an element of W--m,W-p'(.) (Omega) with p(x) is an element of (1, infinity).
引用
下载
收藏
页码:39 / 61
页数:23
相关论文
共 50 条