Topological Degree Methods for Partial Differential Operators in Generalized Sobolev Spaces

被引:1
|
作者
Hammou, Mustapha Ait [1 ]
Azroul, Elhoussine [1 ]
Lahmi, Badr [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Dept Math, Fes, Morocco
来源
关键词
Partial differential operators; General divergence form; Topological Degree; Generalized Sobolev spaces; MAPPINGS;
D O I
10.5269/bspm.39179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to prove, by using the topological degree methods, the existence of solutions for nonlinear elliptic equation Au = f where Au = Sigma(vertical bar alpha vertical bar<m) (-1)(vertical bar alpha vertical bar)D(alpha)A(alpha)(x, u, del u, ..., del(m)u) is partial differential operators of general divergence form and f is an element of W--m,W-p'(.) (Omega) with p(x) is an element of (1, infinity).
引用
下载
收藏
页码:39 / 61
页数:23
相关论文
共 50 条
  • [1] On invertibility of linear partial differential operators in Holder and Sobolev spaces
    Mitina, OA
    Tyurin, VM
    SBORNIK MATHEMATICS, 2003, 194 (5-6) : 733 - 744
  • [2] Generalized Weinstein Sobolev–Gevrey spaces and pseudo-differential operators
    Hassen Ben Mohamed
    Mohamed Moktar Chaffar
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 273 - 292
  • [3] Differential operators on Hermite Sobolev spaces
    SUPRIO BHAR
    B RAJEEV
    Proceedings - Mathematical Sciences, 2015, 125 : 113 - 125
  • [4] Differential operators on Hermite Sobolev spaces
    Bhar, Suprio
    Rajeev, B.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (01): : 113 - 125
  • [5] Generalized Weinstein Sobolev-Gevrey spaces and pseudo-differential operators
    Ben Mohamed, Hassen
    Chaffar, Mohamed Moktar
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 273 - 292
  • [6] On generalized Hardy spaces associated with singular partial differential operators
    Ghandouri, A.
    Mejjaoli, H.
    Omri, S.
    CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (02): : 289 - 320
  • [7] On nonlinear integro-differential operators in generalized Orlicz-Sobolev spaces
    Bardaro, C
    Musielak, J
    Vinti, G
    JOURNAL OF APPROXIMATION THEORY, 2000, 105 (02) : 238 - 251
  • [8] On the boundedness of generalized Cesaro operators on Sobolev spaces
    Lizama, Carlos
    Miana, Pedro J.
    Ponce, Rodrigo
    Sanchez-Lajusticia, Luis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) : 373 - 394
  • [9] Denseness of domains of differential operators in Sobolev spaces
    Yakubov, Sasun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [10] Sobolev spaces and approximation problems for differential operators
    Bagby, T
    Castañeda, N
    APPROXIMATION, COMPLEX ANALYSIS, AND POTENTIAL THEORY, 2001, 37 : 73 - 106