Stochastic Modeling and Simulation of Reaction-Diffusion System with Hill Function Dynamics

被引:1
|
作者
Chen, Minghan [1 ]
Li, Fei [1 ]
Wang, Shuo [1 ]
Cao, Yang [1 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
reaction diffusion master equation (RDME); Hill function; stochastic simulation; hybrid method; KINETICS;
D O I
10.1145/2975167.2985668
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we demonstrate that in one dimensional domain, highly nonlinear reaction dynamics given by Hill function may have dramatic changes when discretization\ size is smaller than a critical value. Moreover, we discuss numerical methods to correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
引用
收藏
页码:525 / 526
页数:2
相关论文
共 50 条
  • [31] The dynamics and pinning of a spike for a reaction-diffusion system
    Ward, MJ
    McInerney, D
    Houston, P
    Gavaghan, D
    Maini, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) : 1297 - 1328
  • [32] A coupled stochastic differential reaction-diffusion system for angiogenesis
    Fellner, Markus
    Juengel, Ansgar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [33] Statistical pulse dynamics in a reaction-diffusion system
    Ohta, T
    Yoshimura, T
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 205 (1-4) : 189 - 194
  • [34] A reaction-diffusion system with periodic front dynamics
    Medvedev, GS
    Kaper, TJ
    Kopell, N
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1601 - 1638
  • [35] Patterns in a reaction-diffusion system, and statistical dynamics
    Rondoni, L
    [J]. NONLINEARITY, 1996, 9 (03) : 819 - 843
  • [36] Reliable numerical analysis for stochastic reaction-diffusion system
    Yasin, Muhammad W.
    Ahmed, Nauman
    Iqbal, Muhammad Sajid
    Rafiq, Muhammad
    Raza, Ali
    Akgul, Ali
    [J]. PHYSICA SCRIPTA, 2023, 98 (01)
  • [37] STOCHASTIC SIMULATION OF THE REACTION-DIFFUSION SYSTEM A+B-]INERT IN INTEGER AND FRACTAL DIMENSIONS
    WENDT, D
    FRICKE, T
    SCHNAKENBERG, J
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 96 (04): : 541 - 546
  • [38] ROBUSTNESS OF RANDOM ATTRACTORS FOR A STOCHASTIC REACTION-DIFFUSION SYSTEM
    You, Yuncheng
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 1000 - 1022
  • [39] Stochastic simulation of the spatio-temporal dynamics of reaction-diffusion systems: the case for the bicoid gradient
    Lecca, Paola
    Ihekwaba, Adaoha E. C.
    Dematte, Lorenzo
    Priami, Corrado
    [J]. JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2010, 7 (01)
  • [40] Tetrahedral mesh generation and visualization for stochastic reaction-diffusion simulation
    Weiliang Chen
    Iain Hepburn
    Erik De Schutter
    [J]. BMC Neuroscience, 11 (Suppl 1)