About the Berry-Esseen theorem for weakly dependent sequences

被引:0
|
作者
Rio, E
机构
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the method of Bergstrom for the rates of convergence in the central limit theorem to weakly dependent sequences. In particular, we prove that, for stationary and uniformly mixing sequences of real-valued and bounded random variables, the rate of convergence in the central limit theorem is of the order of n(-1/2) as soon as the sequence (theta(p))(p>0) of uniform mixing coefficients satisfies Sigma(p>0)p theta(p) < infinity.
引用
收藏
页码:255 / 282
页数:28
相关论文
共 50 条
  • [41] DISCOUNTED CENTRAL LIMIT THEOREM AND ITS BERRY-ESSEEN ANALOGUE
    GERBER, HU
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01): : 389 - &
  • [42] THE BERRY-ESSEEN THEOREM FOR FUNCTIONALS OF DISCRETE MARKOV-CHAINS
    BOLTHAUSEN, E
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (01): : 59 - 73
  • [43] A SHARPENING OF INEQUALITY OF BERRY-ESSEEN
    ZOLOTAREV, VM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (04): : 332 - +
  • [44] An improvement of the Berry-Esseen inequalities
    V. Yu. Korolev
    I. G. Shevtsova
    Doklady Mathematics, 2010, 81 : 119 - 123
  • [45] An improvement of the Berry-Esseen inequalities
    Korolev, V. Yu.
    Shevtsova, I. G.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 119 - 123
  • [46] Higher dimensional quasi-power theorem and Berry-Esseen inequality
    Heuberger, Clemens
    Kropf, Sara
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (02): : 293 - 314
  • [47] A CONDITIONAL BERRY-ESSEEN INEQUALITY
    Klein, Thierry
    Lagnoux, Agnes
    Petit, Pierre
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 76 - 90
  • [48] A Generalization of Discounted Central Limit Theorem and its Berry-Esseen Analogue
    Aghbilagh, B. Amiri
    Shishebor, Z.
    Saber, M. M.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (04): : 289 - 295
  • [49] BERRY-ESSEEN BOUNDS FOR MULTI-DIMENSIONAL CENTRAL LIMIT THEOREM
    BHATTACHARYA, RN
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) : 285 - +
  • [50] A Berry-Esseen theorem for Feynman-Kac and interacting particle models
    Del Moral, P
    Tindel, S
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B): : 941 - 962