THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS

被引:0
|
作者
Schindler, Ralf [1 ]
Wilson, Trevor M. [2 ]
机构
[1] Univ Munster, Inst Math Log & Grundlagenforsch, Einsteinstr 62, D-48149 Munster, Germany
[2] Miami Univ, Dept Math, 301 S Patterson Ave, Oxford, OH 45056 USA
关键词
large cardinals; universally Baire; CARDINALS; MODEL;
D O I
10.1017/jsl.2019.63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the statement "every universally Baire set of reals has the perfect set property" is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if 0(#) exists then every Silver indiscernible is VSS in L. We also show that the statement uB = Delta(1)(2), where uB is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a Sigma(2)-reflecting VSS cardinal.
引用
收藏
页码:508 / 526
页数:19
相关论文
共 50 条