On permanental polynomials of certain random matrices

被引:0
|
作者
Fyodorov, Yan V. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper addresses the calculation of correlation functions of permanental polynomials of matrices with random entries. By exploiting a convenient contour integral representation of the matrix permanent, some explicit results are provided for several random matrix ensembles. When compared with the corresponding formulae for characteristic polynomials, our results show both striking similarities and interesting differences. Based on these findings, we conjecture the asymptotic forms of the density of permanental roots in the complex plane for Gaussian ensembles as well as for the circular unitary ensemble of large matrix dimension.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] Eigenvalues of random lifts and polynomials of random permutation matrices
    Bordenave, Charles
    Collins, Benoit
    ANNALS OF MATHEMATICS, 2019, 190 (03) : 811 - 875
  • [32] Taylor polynomials as an estimator for certain toeplitz matrices
    Michael Kapralos
    The Journal of Supercomputing, 2022, 78 : 13245 - 13275
  • [33] LUCAS POLYNOMIALS AND CERTAIN CIRCULAR FUNCTIONS OF MATRICES
    WALTON, JE
    FIBONACCI QUARTERLY, 1976, 14 (01): : 83 - 87
  • [34] EIGENVALUES OF CERTAIN RECURRENT POLYNOMIALS OF INDETERMINATE MATRICES
    PARODI, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (15): : 633 - &
  • [35] Taylor polynomials as an estimator for certain toeplitz matrices
    Kapralos, Michael
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (11): : 13245 - 13275
  • [36] On Chebyshev polynomials and the inertia of certain tridiagonal matrices
    Castillo, K.
    da Fonseca, C. M.
    Petronilho, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 467
  • [37] Permanental ideals of Hankel matrices
    Grieco, E.
    Guerrieri, A.
    Swanson, I.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2007, 77 (1): : 39 - 58
  • [38] THE GRAPHS WHOSE PERMANENTAL POLYNOMIALS ARE SYMMETRIC
    Li, Wei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 233 - 243
  • [39] On the (Signless) Laplacian Permanental Polynomials of Graphs
    Liu, Shunyi
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 787 - 803
  • [40] Permanental Inequalities for Totally Positive Matrices
    Skandera, Mark
    Soskin, Daniel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):