Self-gravitating Yang monopoles in all dimensions

被引:29
|
作者
Gibbons, G. W. [1 ]
Townsend, P. K. [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0264-9381/23/15/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ( 2k + 2)-dimensional Einstein-Yang-Mills equations for gauge group SO( 2k) ( or SU( 2) for k = 2 and SU( 3) for k = 3) are shown to admit a family of spherically symmetric magnetic monopole solutions, for both zero and nonzero cosmological constant Lambda, characterized by a mass m and a magnetic-type charge. The k = 1 case is the Reissner-Nordstrom black hole. The k = 2 case yields a family of self-gravitating Yang monopoles. The asymptotic spacetime is Minkowski for Lambda = 0 and anti-de Sitter for Lambda < 0, but the total energy is infinite for k > 1. In all cases, there is an event horizon when m > m(c), for some critical mass mc, which is negative for k > 1. The horizon is degenerate when m = mc, and the near-horizon solution is then an AdS(2) x S-2k vacuum.
引用
收藏
页码:4873 / 4885
页数:13
相关论文
共 50 条
  • [41] Thermodynamics of self-gravitating systems
    Katz, J
    [J]. FOUNDATIONS OF PHYSICS, 2003, 33 (02) : 223 - 269
  • [42] SELF-GRAVITATING GASEOUS DISKS
    HUNTER, C
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1972, 4 : 219 - &
  • [43] Self-gravitating cosmic rings
    Clément, G
    [J]. PHYSICS LETTERS B, 1999, 449 (1-2) : 12 - 16
  • [44] SUPERSYMMETRIC SELF-GRAVITATING SOLITONS
    GIBBONS, GW
    KASTOR, D
    LONDON, LAJ
    TOWNSEND, PK
    TRASCHEN, J
    [J]. NUCLEAR PHYSICS B, 1994, 416 (03) : 850 - 880
  • [45] Relaxation in self-gravitating systems
    Fouvry J.-B.
    Bar-Or B.
    [J]. Fouvry, Jean-Baptiste (fouvry@ias.edu), 2018, Oxford University Press (481) : 4566 - 4587
  • [46] Classifying self-gravitating radiations
    Kim, Hyeong-Chan
    [J]. PHYSICAL REVIEW D, 2017, 95 (04)
  • [47] EQUILIBRIUM OF SELF-GRAVITATING RINGS
    OSTRIKER, J
    [J]. ASTROPHYSICAL JOURNAL, 1964, 140 (03): : 1067 - &
  • [48] Self-gravitating Brownian particles in two dimensions: the case of N=2 particles
    Chavanis, P. H.
    Mannella, R.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (02): : 139 - 165
  • [49] Self-gravitating Brownian particles in two dimensions: the case of N = 2 particles
    P. H. Chavanis
    R. Mannella
    [J]. The European Physical Journal B, 2010, 78 : 139 - 165
  • [50] HOMOGENEOUS SELF-GRAVITATING FLOWS
    ALECIAN, G
    LEORAT, J
    [J]. ASTRONOMY & ASTROPHYSICS, 1988, 196 (1-2) : 1 - 16