Feasible optimum Godambe scores for a semi-parametric GARCH time series

被引:0
|
作者
Hwang, S. Y. [1 ]
机构
[1] Sookmyung Womens Univ, Dept Stat, Seoul, South Korea
关键词
Feasible score; GARCH; Optimum Godambe score; Quasi-maximum likelihood; QUASI-MAXIMUM-LIKELIHOOD; MODELS;
D O I
10.1016/j.jkss.2016.08.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper concerns a semi-parametric GARCH time series for which the error distribution is unspecified. Godambe scores (GS) including quasi-likelihood scores are considered to estimate parameters of interest. Allowing the Godambe innovation to contain nuisance parameters associated with moments of the unknown error distribution, an optimum GS (oGS, for short) is obtained for each fixed nuisance parameters, and in turn the nuisance parameters are replaced by the quasi maximum likelihood (QML) residuals so that one can obtain computationally feasible zero of the oGS. It is verified under certain conditions that the solution of the feasible oGS continues to be asymptotically optimum, while extending the family of error distributions under consideration. (C) 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 112
页数:9
相关论文
共 50 条
  • [31] Semi-parametric Adaptive Control of Discrete-time Nonlinear Systems
    Yang, Chenguang
    Chai, Tianyou
    Zhai, Lianfei
    Ge, Shuzhi Sam
    Lee, Tong Heng
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS ( ICAL 2009), VOLS 1-3, 2009, : 347 - +
  • [32] Semi-parametric statistical approaches for space-time process prediction
    Angulo, JM
    González-Manteiga, W
    Febrero-Bande, M
    Alonso, FJ
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1998, 5 (04) : 297 - 316
  • [33] Semi-parametric statistical approaches for space-time process prediction
    J.M Angulo
    W. González-Manteiga
    M. Febrero-Bande
    F. J. Alonso
    [J]. Environmental and Ecological Statistics, 1998, 5 : 297 - 316
  • [34] Semi-parametric time-to-event modelling of lengths of hospital stays
    Li, Yang
    Liu, Hao
    Wang, Xiaoshen
    Tu, Wanzhu
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (05) : 1623 - 1647
  • [35] A semi-parametric gap-filling model for eddy covariance CO2 flux time series data
    Stauch, Vanessa J.
    Jarvis, Andrew J.
    [J]. GLOBAL CHANGE BIOLOGY, 2006, 12 (09) : 1707 - 1716
  • [36] Semi-parametric small-area estimation by combining time-series and cross-sectional data methods
    Shokoohi, Farhad
    Torabi, Mahmoud
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2018, 60 (03) : 323 - 342
  • [37] Maternal full-time employment and overweight children: Parametric, semi-parametric, and non-parametric assessment
    Liu, Echu
    Hsiao, Cheng
    Matsumoto, Tomoya
    Chou, Shinyi
    [J]. JOURNAL OF ECONOMETRICS, 2009, 152 (01) : 61 - 69
  • [38] Time-domain semi-parametric estimation based on a metabolite basis set
    Ratiney, H
    Sdika, M
    Coenradie, Y
    Cavassila, S
    van Ormondt, D
    Graveron-Demilly, D
    [J]. NMR IN BIOMEDICINE, 2005, 18 (01) : 1 - 13
  • [39] Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
    von Stosch, Moritz
    Peres, Joana
    de Azevedo, Sebastiao Feyo
    Oliveira, Rui
    [J]. BMC SYSTEMS BIOLOGY, 2010, 4
  • [40] Semi-Parametric Control Architecture for Autonomous Underwater Vehicles Subject to Time Delays
    Carlucho, Ignacio
    Stephens, Dylan
    Ard, William
    Barbalata, Corina
    [J]. IEEE ACCESS, 2023, 11 : 71287 - 71300