Feasible optimum Godambe scores for a semi-parametric GARCH time series

被引:0
|
作者
Hwang, S. Y. [1 ]
机构
[1] Sookmyung Womens Univ, Dept Stat, Seoul, South Korea
关键词
Feasible score; GARCH; Optimum Godambe score; Quasi-maximum likelihood; QUASI-MAXIMUM-LIKELIHOOD; MODELS;
D O I
10.1016/j.jkss.2016.08.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper concerns a semi-parametric GARCH time series for which the error distribution is unspecified. Godambe scores (GS) including quasi-likelihood scores are considered to estimate parameters of interest. Allowing the Godambe innovation to contain nuisance parameters associated with moments of the unknown error distribution, an optimum GS (oGS, for short) is obtained for each fixed nuisance parameters, and in turn the nuisance parameters are replaced by the quasi maximum likelihood (QML) residuals so that one can obtain computationally feasible zero of the oGS. It is verified under certain conditions that the solution of the feasible oGS continues to be asymptotically optimum, while extending the family of error distributions under consideration. (C) 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 112
页数:9
相关论文
共 50 条
  • [1] Feasible optimum Godambe scores for a semi-parametric GARCH time series
    S. Y. Hwang
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 104 - 112
  • [2] On the efficiency of a semi-parametric GARCH model
    Di, Jianing
    Gangopadhyay, Ashis
    [J]. ECONOMETRICS JOURNAL, 2011, 14 (02): : 257 - 277
  • [3] Semi-parametric Estimation of Count Time Series
    Ghahramani, Melody
    Dag, Osman
    de Leon, Alexander R.
    [J]. INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 81 - 86
  • [4] Semi-parametric density estimation for time-series with multiplicative adjustment
    Wang, Kaiping
    Lin, Lu
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (08) : 1274 - 1283
  • [5] A semi-parametric time series approach in modeling hourly electricity loads
    Liu, Jun M.
    Chen, Rong
    Liu, Lon-Mu
    Harris, John L.
    [J]. JOURNAL OF FORECASTING, 2006, 25 (08) : 537 - 559
  • [6] Semi-parametric estimation and forecasting for exogenous log-GARCH models
    Ming Chen
    Qiongxia Song
    [J]. TEST, 2016, 25 : 93 - 112
  • [7] Semi-parametric estimation and forecasting for exogenous log-GARCH models
    Chen, Ming
    Song, Qiongxia
    [J]. TEST, 2016, 25 (01) : 93 - 112
  • [8] Modeling autoregressive fuzzy time series data based on semi-parametric methods
    Zarei, R.
    Akbari, M. Gh.
    Chachi, J.
    [J]. SOFT COMPUTING, 2020, 24 (10) : 7295 - 7304
  • [9] Trimming and tapering semi-parametric estimates in asymmetric long memory time series
    Arteche, J
    Velasco, C
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2005, 26 (04) : 581 - 611
  • [10] SEMI-PARAMETRIC DYNAMIC TIME SERIES MODELLING WITH APPLICATIONS TO DETECTING NEURAL DYNAMICS
    Rigat, Fabio
    Smith, Jim Q.
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (04): : 1776 - 1804