Experimental studies of heat transfer and flow regimes during flow boiling of water and alumina nanofluids at different heat and mass fluxes

被引:6
|
作者
Sudheer, S. Venkata Sai [1 ]
Kumar, K. Kiran [1 ]
Balasubramanian, Karthik [1 ]
机构
[1] Natl Inst Technol Warangal, Mech Engn Dept, Warangal, Andhra Pradesh, India
关键词
Nanofluid boiling; heat transfer coefficient; flow regime; flow map; NANO-FLUIDS; SURFACE; VISUALIZATION; ENHANCEMENT; AL2O3-WATER; PRESSURE; COOLANT;
D O I
10.1177/0954406219866876
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The flow boiling heat transfer in a vertical pipe of inner diameter 7.5 mm was investigated with pure water and Al2O3/water nanofluid as working fluids. The main heater section was made up of borosilicate glass for better visualization of flow regime. For this study, particle concentrations of 0.001%, 0.005% and 0.01% were considered. The influence of mass flux and heat flux, on flow boiling heat transfer was analysed. From the results, it is observed that boiling heat transfer coefficient is increasing with mass flux for both water and nanofluids. Use of nanofluid decreases wall superheat. The average reduction of wall superheat, as compared to water, at mass flux of 905.42 kg/s-m(2) for 0.001%, 0.005% and 0.01% nanofluids is 10.8%, 21.34% and 26.79% respectively. It is also observed that heat transfer coefficient increases with particle concentration due to the changed heater surface characteristics and amendment in bubble formation mechanism. The average enhancement in heat transfer coefficient, as compared to water, for the particle concentrations of 0.001%, 0.005% and 0.01% at a mass flux of 905.42 kg/s-m(2) is found to be 12.11%, 21.75% and 27.97%, respectively. Flow visualization study was also done to differentiate flow patterns of water and nanofluids. Churn flow regime was observed for water at moderate heat fluxes. However, in case of nanofluids, churn flow was not observed. The flow boiling heat transfer coefficient is observed to be high for the nanofluids compared to water. An effort has been made to explain the heat transfer mechanism, based on the existing flow boiling regime under the given conditions.
引用
收藏
页码:7155 / 7169
页数:15
相关论文
共 50 条
  • [21] Experimental investigation of the subcooled flow boiling heat transfer of water and nanofluids in a horizontal metal foam tube
    Shahram Azizifar
    Mohammad Ameri
    Iman Behroyan
    Heat and Mass Transfer, 2021, 57 : 1499 - 1511
  • [22] Experimental investigation of the subcooled flow boiling heat transfer of water and nanofluids in a horizontal metal foam tube
    Azizifar, Shahram
    Ameri, Mohammad
    Behroyan, Iman
    HEAT AND MASS TRANSFER, 2021, 57 (09) : 1499 - 1511
  • [23] Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime
    Heyhat, M. M.
    Kowsary, F.
    Rashidi, A. M.
    Esfehani, S. Alem Varzane
    Amrollahi, A.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (08) : 1272 - 1278
  • [24] Experimental Study of Convective Heat Transfer of Cu/Water Nanofluid in Different Flow Regimes
    Wusiman, Kuerbanjiang
    Nine, Md. J.
    Tulugan, Kelimu
    Afrianto, Handry
    Eom, Yoon Sub
    Jeong, Hyomin
    Chung, Hanshik
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (03) : 321 - 328
  • [25] Flow boiling heat transfer in microchannel heat sinks of different flow orientations
    Zhang, H. Y.
    Pinjala, D.
    HT2005: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2005, VOL 2, 2005, : 859 - 866
  • [26] Flow boiling heat transfer in microchannel heat sinks of different flow orientations
    Zhang, H. Y.
    Pinjala, D.
    ADVANCES IN ELECTRONIC PACKAGING 2005, PTS A-C, 2005, : 51 - 58
  • [27] An Experimental Investigation of Flow Boiling Heat Transfer for Water and Refrigerants in Microchannel Heat Exchangers
    Shamirzaev, A. S.
    Mordovskoy, A. S.
    Kuznetsov, V. V.
    XV ALL-RUSSIAN SEMINAR DYNAMICS OF MULTIPHASE MEDIA, 2018, 1939
  • [28] Flow boiling heat transfer of water in microchannel heat sink
    Kuznetsov, V. V.
    Shamirzaev, A. S.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2012, 21 (01) : 28 - 35
  • [29] Direct numerical simulation of flow and heat transfer of supercritical water with different heat fluxes
    Bai, Yifan
    Wang, Han
    Liu, Minyun
    Wu, Jinghui
    Lyu, Haicai
    Huang, Yanping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 221
  • [30] Flow boiling heat transfer of water in microchannel heat sink
    V. V. Kuznetsov
    A. S. Shamirzaev
    Journal of Engineering Thermophysics, 2012, 21 : 28 - 35