Semantic Trajectory Compression

被引:0
|
作者
Schmid, Falko [1 ]
Richter, Kai-Florian [1 ]
Laube, Patrick [2 ]
机构
[1] Univ Bremen, Transreg Collaborat Res Ctr SFB TR Spatial Cognit, POB 330 440, D-28334 Bremen, Germany
[2] Univ Melbourne, Dept Geomat, Melbourne, Vic 3010, Australia
关键词
Trajectories; Moving Objects; Semantic Description; Data Compression;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the light of rapidly growing repositories capturing the movement trajectories of people in spacetime, the need for trajectory compression becomes obvious. This paper argues for semantic trajectory compression (STC) as a means of substantially compressing the movement trajectories in an urban environment with acceptable information loss. STC exploits that human urban movement and its large-scale use (LBS, navigation) is embedded in some geographic context, typically defined by transportation networks. STC achieves its compression rate by replacing raw, highly redundant position information from, for example, GPS sensors with a semantic representation of the trajectory consisting of a sequence of events. The paper explains the underlying principles of STC and presents an example use case.
引用
收藏
页码:411 / +
页数:2
相关论文
共 50 条
  • [31] The effect of semantic information on saccade trajectory deviations
    Weaver, Matthew D.
    Lauwereyns, Johan
    Theeuwes, Jan
    [J]. VISION RESEARCH, 2011, 51 (10) : 1124 - 1128
  • [32] Semantic trajectory extraction framework for indoor space
    Luo X.
    Chen X.
    Shou L.
    Chen K.
    Wu Y.
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (03): : 186 - 193
  • [33] Semantic Trajectory Modelling in Indoor and Outdoor Spaces
    Noureddine, Hassan
    Ray, Cyril
    Claramunt, Christophe
    [J]. 2020 21ST IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2020), 2020, : 131 - 136
  • [34] Towards an Affective Semantic Trajectory Generator (ASTG)
    Karatzoglou, Antonios
    Szarvas, Markus
    Beigl, Michael
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2018), 2018,
  • [35] Semantic trajectory based video event detection
    Wang X.-F.
    Zhang D.-P.
    Wang F.
    Shi Z.-Z.
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33 (10): : 1845 - 1858
  • [36] Multicamera trajectory analysis for semantic behaviour characterisation
    Patino, Luis
    Ferryman, James
    [J]. 2014 11TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2014, : 369 - 374
  • [37] Approximate Keyword Search in Semantic Trajectory Database
    Zheng, Bolong
    Yuan, Nicholas Jing
    Zheng, Kai
    Xie, Xing
    Sadiq, Shazia
    Zhou, Xiaofang
    [J]. 2015 IEEE 31ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2015, : 975 - 986
  • [38] Learning semantic scene models by trajectory analysis
    Wang, Xiaogang
    Tieu, Kinh
    Grimson, Eric
    [J]. COMPUTER VISION - ECCV 2006, PT 3, PROCEEDINGS, 2006, 3953 : 110 - 123
  • [39] Semantic compaction, transmission, and compression codes
    Willems, FMJ
    Kalker, T
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 214 - 218
  • [40] DeepSIC: Deep Semantic Image Compression
    Luo, Sihui
    Yang, Yezhou
    Yin, Yanling
    Shen, Chengchao
    Zhao, Ya
    Song, Mingli
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 96 - 106