Characterization and control of chaotic dynamics in a nerve conduction model equation

被引:3
|
作者
Rajasekar, S
机构
[1] Department of Physics, Manonmaniam Sundaranar University
来源
PRAMANA-JOURNAL OF PHYSICS | 1997年 / 48卷 / 01期
关键词
Bonhoeffer vanderPol oscillator; local Lyapunov exponent; weak and strong chaos; controlling of chaos;
D O I
10.1007/BF02845633
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the Bonhoeffer-van der Pol (BVP) equation which describes propagation of nerve pulses in a neural membrane, and characterize the chaotic attractor at various bifurcations, and the probability distribution associated with weak and strong chaos. We illustrate control of chaos in the BVP equation by the Ott-Grebogi-Yorke method as well as through a periodic instantaneous burst.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 50 条
  • [21] Chaotic dynamics and diffusion in a piecewise linear equation
    Shahrear, Pabel
    Glass, Leon
    Edwards, Rod
    CHAOS, 2015, 25 (03)
  • [22] Chaotic dynamics of the fractionally damped Duffing equation
    Sheu, Long-Jye
    Chen, Hsien-Keng
    Chen, Juhn-Horng
    Tam, Lap-Mou
    CHAOS SOLITONS & FRACTALS, 2007, 32 (04) : 1459 - 1468
  • [23] QUALITATIVE ANALYSIS ON FITZHUGH’S NERVE CONDUCTION EQUATION
    蔡燧林
    张平光
    Chinese Annals of Mathematics, 1986, (02) : 221 - 231
  • [24] BIFURCATION, CHAOS AND SUPPRESSION OF CHAOS IN FITZHUGH-NAGUMO NERVE-CONDUCTION MODEL EQUATION
    RAJASEKAR, S
    LAKSHMANAN, M
    JOURNAL OF THEORETICAL BIOLOGY, 1994, 166 (03) : 275 - 288
  • [25] Chaotic dynamics of a glaciohydraulic model
    Kingslake, J.
    JOURNAL OF GLACIOLOGY, 2015, 61 (227) : 493 - 502
  • [26] PIEZOELECTRIC MODEL FOR NERVE-CONDUCTION
    GUZELSU, AN
    AKCASU, A
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1974, 238 (OCT11) : 339 - 351
  • [27] Characterization of the Chaotic Magnetic Particle Dynamics
    Laroze, David
    Bragard, Jean
    Suarez, Omar J.
    Pleiner, Harald
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (10) : 3032 - 3035
  • [28] GLOBAL SPECTRAL CHARACTERIZATION OF CHAOTIC DYNAMICS
    SANO, M
    SATO, S
    SAWADA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (04): : 945 - 948
  • [29] Lifespan Characterization of Chaotic Dynamics in Menstruation
    Derry, G. N.
    Derry, P. S.
    NONLINEAR DYNAMICS PSYCHOLOGY AND LIFE SCIENCES, 2018, 22 (04) : 439 - 456
  • [30] Advanced feedback control of the chaotic duffing equation
    Jiang, ZP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (02): : 244 - 249