Characterization and control of chaotic dynamics in a nerve conduction model equation

被引:3
|
作者
Rajasekar, S
机构
[1] Department of Physics, Manonmaniam Sundaranar University
来源
PRAMANA-JOURNAL OF PHYSICS | 1997年 / 48卷 / 01期
关键词
Bonhoeffer vanderPol oscillator; local Lyapunov exponent; weak and strong chaos; controlling of chaos;
D O I
10.1007/BF02845633
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the Bonhoeffer-van der Pol (BVP) equation which describes propagation of nerve pulses in a neural membrane, and characterize the chaotic attractor at various bifurcations, and the probability distribution associated with weak and strong chaos. We illustrate control of chaos in the BVP equation by the Ott-Grebogi-Yorke method as well as through a periodic instantaneous burst.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 50 条
  • [1] Characterization and control of chaotic dynamics in a nerve conduction model equation
    S Rajasekar
    Pramana, 1997, 48 : 249 - 258
  • [2] CHAOTIC WAVETRAINS IN A NERVE-CONDUCTION MODEL
    LAHIRI, A
    GOSWAMI, DK
    BASU, U
    DASGUPTA, B
    PHYSICS LETTERS A, 1985, 111 (05) : 246 - 250
  • [3] Combinatorial control of global dynamics in a chaotic differential equation
    Bollt, EM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (08): : 2145 - 2162
  • [4] Control of chaotic dynamics in an OLG economic model
    Mendes, Diana A.
    Mendes, Vivaldo
    INTERNATIONAL CONFERENCE ON CONTROL AND SYNCHRONIZATION OF DYNAMICAL SYSTEMS (CSDS-2005), 2005, 23 : 158 - 181
  • [5] Conduction block and chaotic dynamics in an asymmetrical model of coupled cardiac cells
    Landau, M
    Lorente, P
    JOURNAL OF THEORETICAL BIOLOGY, 1997, 186 (01) : 93 - 105
  • [6] Chaotic dynamics in the Friedmann equation
    Tanaka, Y
    Mizuno, Y
    Kado, T
    CHAOS SOLITONS & FRACTALS, 2005, 24 (02) : 407 - 422
  • [7] THE SYMMETRIES OF A NERVE-CONDUCTION EQUATION
    VILLMANN, T
    SCHIERWAGEN, A
    APPLIED MATHEMATICS LETTERS, 1991, 4 (06) : 33 - 36
  • [8] Numerical treatment of the nerve conduction equation
    Khalifa, AK
    Farea, HA
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2000, 76 (02) : 149 - 158
  • [9] SOLUTIONS OF A NERVE-CONDUCTION EQUATION
    BELL, J
    COOK, LP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (04) : 678 - 688
  • [10] Chaotic dynamics of an unstable Burgers equation
    Sakaguchi, H
    PHYSICA D, 1999, 129 (1-2): : 57 - 67