Wave heave energy conversion using modular multistability

被引:44
|
作者
Harne, R. L. [1 ]
Schoemaker, M. E. [2 ]
Dussault, B. E. [1 ]
Wang, K. W. [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
关键词
Mobile wave energy converter; Multistability; Impulsive dynamics; Electromagnetic induction; MAGNET LINEAR GENERATOR;
D O I
10.1016/j.apenergy.2014.05.038
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In calm sea environments and for compact architectures, the power generation performance of wave energy converters may be drastically inhibited due to undesired dissipative effects in the conversion mechanisms. This research develops an alternative power take-off methodology to surmount these challenges and to enable practical wave energy conversion for mobile converter architectures that could power monitoring instrumentation or telecommunications. Building upon related research findings and engineering insights, the basis for energy conversion is the harnessing of impulsive kinetics induced as a multistable structure is extended and compressed. A prototype system is built and analyzed to evaluate the potential for this conversion framework. Composed of modular "cells", the chain-like platform exhibits an increased number of stable configurations with each additional unit cell. Extension and compression of one end of the multistable chain (representative of wave heaving) while the opposing end remains mostly fixed, excites high frequency inter-cell dynamics due to impulsive transitions amongst configurations that are converted to electric current through electromagnetic induction. An experimentally validated model is utilized to gain insight towards successful realization of the power conversion concept and design guidelines are derived to maximize performance and ensure viability. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 156
页数:9
相关论文
共 50 条
  • [31] Wave Energy Conversion for Shoreline Protection
    McCormick, Michael E.
    Murtha, Robert C.
    Steinmetz, Jeffrey
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2013, 47 (04) : 187 - 192
  • [32] ANALYSIS OF WAVE ENERGY CONVERSION PROCESS
    Nedelcu, Dragos-Iulian
    Sajin, Tudor
    Ferreri, Giovanni Batistta
    Lo Re, Carlo
    Ostahie, Constantin-Narcis
    MODTECH 2011: NEW FACE OF T.M.C.R., VOL I AND II, 2011, : 753 - 756
  • [33] Challenges and issues of wave energy conversion
    Beyene, Asfaw
    Wilson, James H.
    SEA TECHNOLOGY, 2008, 49 (05) : 43 - 46
  • [34] An overview of methods for wave energy conversion
    Chybowski, Leszek
    Kuzniewski, Boleslaw
    SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2015, 41 (113): : 17 - 23
  • [35] Capture and Conversion of Multidirectional Wave Energy
    Waid, Robert L.
    PROCEEDINGS OF THE EIGHTEENTH (2008) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2008, : 336 - 341
  • [36] An electrical approach to wave energy conversion
    Leijon, M
    Danielsson, O
    Eriksson, M
    Thorburn, K
    Bernhoff, H
    Isberg, J
    Sundberg, J
    Ivanova, I
    Sjöstedt, E
    Ågren, O
    Karlsson, KE
    Wolfbrandt, A
    RENEWABLE ENERGY, 2006, 31 (09) : 1309 - 1319
  • [37] Ocean Wave Energy Conversion: A Review
    Bouhrim, Hafsa
    El Marjani, Abdellatif
    Nechad, Rajae
    Hajjout, Imane
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [38] Air Turbines for Wave Energy Conversion
    Takao, Manabu
    Setoguchi, Toshiaki
    INTERNATIONAL JOURNAL OF ROTATING MACHINERY, 2012, 2012
  • [39] Wave energy conversion in a sheltered sea
    Beels, Charlotte
    De Backer, Griet
    Mathys, Pieter
    SEA TECHNOLOGY, 2008, 49 (09) : 21 - 24
  • [40] Ocean Wave Energy Conversion - A Survey
    Muetze, A.
    Vining, J. G.
    CONFERENCE RECORD OF THE 2006 IEEE INDUSTRY APPLICATIONS CONFERENCE, FORTY-FIRST IAS ANNUAL MEETING, VOL 1-5, 2006, : 1410 - 1417