Controllable synthesis of spherical silicon and its performance as an anode for lithium-ion batteries

被引:5
|
作者
Lu, Mi [1 ]
Zhang, Houan [1 ]
机构
[1] Xiamen Univ Technol, Sch Mat Sci & Engn, Xiamen 361024, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Anodes; Silicon sphere; Hydrolysis;
D O I
10.1007/s11581-013-1006-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spherical silicon is controllably synthesized by the hydrolysis of tetraethylorthosilicate (TEOS) with the addition of different contents of ammonia to form SiO2, then reduced by magnesium powder in argon atmosphere at 900 A degrees C for 3 h. The experimental results show that the electrochemical performance of the as-prepared silicon anode is much affected by the morphology of silicon, and the spherical silicon with a particle size of 250-300 nm shows a reversible capacity of 1,345.8 mAh g(-1) with the capacity retention of 83.2 % after 20 cycles. The relationship between the electrochemical performance of the spherical silicon and the diameters of silicon sphere makes it possible to control the performance of the silicon anode by adjusting the hydrolysis conditions of TEOS.
引用
收藏
页码:1695 / 1698
页数:4
相关论文
共 50 条
  • [31] Controllable synthesis of crystalline germanium nanorods as anode for lithium-ion batteries with high cycling stability
    Liu, Chao
    Jiang, Yiming
    Meng, Chao
    Song, Haohang
    Li, Bo
    Xia, Shengqing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 660 : 87 - 96
  • [32] Proton solvent-controllable synthesis of manganese oxalate anode material for lithium-ion batteries
    Zhang, Ya-Nan
    Li, Shu-Shu
    Kuai, Hong-Xiang
    Long, Yun-Fei
    Lv, Xiao-Yan
    Su, Jing
    Wen, Yan-Xuan
    RSC ADVANCES, 2021, 11 (38) : 23259 - 23269
  • [33] Synthesis and Characterization of Maghemite as an Anode for Lithium-Ion Batteries
    Golmohammad, M.
    Golestanifard, F.
    Mirhabibi, A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (08): : 6432 - 6442
  • [34] Micromechanisms of Capacity Fade in Silicon Anode for Lithium-Ion Batteries
    Pal, S.
    Damle, S.
    Patel, S.
    Dutta, M. K.
    Kumta, P. N.
    Maiti, S.
    BATTERY/ENERGY TECHNOLOGY (GENERAL) - 220TH ECS MEETING, 2012, 41 (11): : 87 - 99
  • [35] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [36] Crystalline silicon gels as anode material for lithium-ion batteries
    Flores-Lopez, S. L.
    Santos-Gomez, L. D.
    Rey-Raap, N.
    Camean, I.
    Garcia, A. B.
    Arenillas, A.
    Garcia-Granda, S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E96 - E97
  • [37] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [38] Optimal Microstructure of Silicon Monoxide as the Anode for Lithium-Ion Batteries
    Zhang, Linghong
    Liu, Yuzi
    Guo, Fangmin
    Ren, Yang
    Lu, Wenquan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (46) : 51965 - 51974
  • [39] Advanced electrolyte/additive for lithium-ion batteries with silicon anode
    Zhang, Shuo
    He, Meinan
    Su, Chi-Cheung
    Zhang, Zhengcheng
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 13 : 24 - 35
  • [40] Virus-Enabled Silicon Anode for Lithium-Ion Batteries
    Chen, Xilin
    Gerasopoulos, Konstantinos
    Guo, Juchen
    Brown, Adam
    Wang, Chunsheng
    Ghodssi, Reza
    Culver, James N.
    ACS NANO, 2010, 4 (09) : 5366 - 5372