Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial

被引:33
|
作者
Brillhart, J
Morton, P
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
关键词
D O I
10.1016/j.jnt.2004.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the theory Of elliptic curves, we show that the class number h(-p) of the field Q(root-p) appears in the count of certain factors of the Legendre polynomials P-m(X) (mod p), where p is a prime > 3 and m has the form (p-e)/k, with k = 2, 3 or 4 and p equivalent to e (mod k). As part of the proof we explicitly compute the Hasse invariant of the Hessian curve y(2) + alphaxy + y = x(3) and find an elementary expression for the supersingular polynomial ss(p)(X) whose roots are the supersingular j-invariants of elliptic Curves in characteristic p. As a corollary we show that the class number h(-p) also shows Lip in the factorization (mod p) of certain Jacobi polynomials. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 111
页数:33
相关论文
共 50 条
  • [41] On the modularity of supersingular elliptic curves over certain totally real number fields
    Jarvis, Frazer
    Manoharmayum, Jayanta
    JOURNAL OF NUMBER THEORY, 2008, 128 (03) : 589 - 618
  • [42] On the class numbers of the fields of the pn-torsion points of elliptic curves over Q
    Sairaiji, Fumio
    Yamauchi, Takuya
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (03): : 893 - 915
  • [43] SUPERSINGULAR PRIMES FOR ELLIPTIC-CURVES OVER REAL NUMBER-FIELDS
    ELKIES, ND
    COMPOSITIO MATHEMATICA, 1989, 72 (02) : 165 - 172
  • [44] Torsion of rational elliptic curves over quadratic fields
    Enrique González-Jiménez
    José M. Tornero
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 923 - 934
  • [45] Elliptic curves over real quadratic fields are modular
    Freitas, Nuno
    Le Hung, Bao V.
    Siksek, Samir
    INVENTIONES MATHEMATICAE, 2015, 201 (01) : 159 - 206
  • [46] Torsion of rational elliptic curves over quadratic fields
    Gonzalez-Jimenez, Enrique
    Tornero, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 923 - 934
  • [47] Elliptic curves over real quadratic fields are modular
    Nuno Freitas
    Bao V. Le Hung
    Samir Siksek
    Inventiones mathematicae, 2015, 201 : 159 - 206
  • [48] Torsion groups of elliptic curves over quadratic fields
    Kamienny, Sheldon
    Najman, Filip
    ACTA ARITHMETICA, 2012, 152 (03) : 291 - 305
  • [49] CERTAIN RAY CLASS INVARIANTS OF REAL QUADRATIC FIELDS
    SHINTANI, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1977, 53 (03): : 128 - 131
  • [50] RAY CLASS INVARIANTS OVER IMAGINARY QUADRATIC FIELDS
    Jung, Ho Yun
    Koo, Ja Kyung
    Shin, Dong Hwa
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (03) : 413 - 426