Plasma nanocoating of thiophene onto MoS2 nanotubes

被引:9
|
作者
Turkaslan, Banu Esencan [1 ]
Dikmen, Sibel [2 ]
Oksuz, Lutfi [3 ]
Oksuz, Aysegul Uygun [2 ]
机构
[1] Suleyman Demirel Univ, Fac Engn, Dept Chem Engn, TR-32260 Isparta, Turkey
[2] Suleyman Demirel Univ, Fac Arts & Sci, Dept Chem, TR-32260 Isparta, Turkey
[3] Suleyman Demirel Univ, Fac Arts & Sci, Dept Phys, TR-32260 Isparta, Turkey
关键词
Atmospheric pressure plasma; polymerization; Polythiophene; Molybdenum disulfide; Nanotube; MOLYBDENUM-DISULFIDE; NANOCOMPOSITES; POLYTHIOPHENE; INTERCALATION; NANOPARTICLES;
D O I
10.1016/j.apsusc.2015.10.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MoS2 nanotubes were coated with conductive polymer thiophene by atmospheric pressure radiofrequency (RF) glow discharge. MoS2 nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS2 precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS2 nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS2 nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS2 nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS2 nanotube nanocomposites are changed and the structure become more uniformly. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1558 / 1564
页数:7
相关论文
共 50 条
  • [21] Arrays of ZnO/MoS2 nanorods and MoS2 nanotubes for spectral enhancement and self-cleaning
    Zheng, Yifan
    Lan, Jinshen
    Qu, Shanzhi
    Ma, Mengwei
    Zheng, Xuanli
    Guo, Shengshi
    Huang, Shengli
    Li, Shuping
    Kang, Junyong
    [J]. MICROCHEMICAL JOURNAL, 2024, 205
  • [22] Low Crystalline MoS2 Nanotubes from MoS2 Nanomasks for Lithium Ion Battery Applications
    Zhao, Xuewen
    Liu, Zechen
    Xiao, Wenyue
    Huang, Hongyang
    Zhang, Lihui
    Cheng, Yonghong
    Zhang, Jinying
    [J]. ACS APPLIED NANO MATERIALS, 2020, 3 (08) : 7580 - 7586
  • [23] Hierarchical MoS2/MoO3 nanotubes with excellent electrochemical performance: MoS2 bubbles on MoO3 nanotubes
    Ma, Ying
    Jia, Yulong
    Lin, Yinhe
    Shi, Wenbing
    [J]. CRYSTENGCOMM, 2019, 21 (44) : 6698 - 6702
  • [24] Inorganic nanotubes as nanoreactors:: The first MoS2 nanopods
    Remskar, Maja
    Mrzel, Ales
    Virsek, Marko
    Jesih, Adolf
    [J]. ADVANCED MATERIALS, 2007, 19 (23) : 4276 - +
  • [25] Hydrothermal synthesis of MoS2/CNT coaxial nanotubes
    Xia, JB
    Xu, ZD
    Chen, WX
    Zheng, YF
    Du, ZQ
    [J]. ACTA CHIMICA SINICA, 2004, 62 (20) : 2109 - 2112
  • [26] Spin-Orbit Effects in MoS2 Nanotubes
    Milivojevic, Marko
    Dmitrovic, Sasa
    Damnjanovic, Milan
    Vukovic, Tatjana
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (20): : 11141 - 11149
  • [27] Novel hydrogen storage properties of MoS2 nanotubes
    Chen, J
    Li, SL
    Tao, ZL
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 356 : 413 - 417
  • [28] MoS2 HREM images by nanotubes and slave deformations
    Espinosa, A
    Ascencio, JA
    Jose-Yacaman, M
    [J]. ELECTRON MICROSCOPY 1998, VOL 3: MATERIALS SCIENCE 2, 1998, : 101 - 102
  • [29] Diffraction from WS2 and MoS2 Nanotubes
    Damnjanovic, M.
    Vukovic, T.
    Milosevic, I.
    [J]. ACTA PHYSICA POLONICA A, 2011, 120 (02) : 224 - 226
  • [30] Magnetic properties of MoS2 nanotubes doped with lithium
    Jaglicic, Z
    Jeromen, A
    Trontelj, Z
    Mihailovic, D
    Arcon, D
    Remskar, M
    Mrzel, A
    Dominko, R
    Gaberscek, M
    Martinez-Agudo, JM
    Gómez-Garcia, CJ
    Coronado, E
    [J]. POLYHEDRON, 2003, 22 (14-17) : 2293 - 2295