Mechanism Modeling of Elevated Temperature Pressure Swing Adsorption Process for Pre-combustion CO2 Capture

被引:5
|
作者
Zheng, Yam [1 ]
Shi, Yixiang [1 ]
Li, Shuang [1 ]
Cai, Ningsheng [1 ]
机构
[1] Tsinghua Univ, Dept Thermal Engn, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
来源
GHGT-11 | 2013年 / 37卷
关键词
CO2; capture; elevated temperature PSA; elementary reaction; adsorption kinetics; K-promoted HTlcs; NONEQUILIBRIUM KINETIC-MODEL; HYDROTALCITE-LIKE COMPOUND; DESORPTION BEHAVIOR; SORPTION; DESCRIBES; METHANE; SURFACE; OXIDES; HTLC;
D O I
10.1016/j.egypro.2013.06.112
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The elevated temperature pressure swing adsorption (PSA) is a promising technology for pre-combustion CO2 capture in Integrated Gasification Combined Cycle (IGCC) power plant by taking the advantages of high partial pressure (1.0-2.0 MPa) of CO2 in the syngas after water-gas shift reaction. An elementary reaction kinetic model was developed to predict the CO2 adsorption capacity and adsorption kinetic behavior for potassium promoted hydrotalcite-like compound (K-promoted HTlcs). Thermo gravimetric analysis (TGA) and a high pressure adsorption apparatus were respectively used below atmospheric pressure and above atmospheric pressure. The results indicate that the modeling results agreed well the experimental results. The elevated temperature PSA system modeling framework is developed by considering comprehensive coupling effects from mass, heat, and momentum transport mechanisms. The modeling framework is implemented in the gPROMS commercial simulation platform by integrating adsorption bed with dynamic boundary condition and realistic operating procedures. The presented modeling framework can be further applied for the system optimization and controller design for multi-column elevated temperature PSA processes. (C) 2013 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:2307 / 2315
页数:9
相关论文
共 50 条
  • [41] Temperature swing adsorption process for CO2 capture using polyaniline solid sorbent
    Yang, Ming-Wei
    Chen, Nai-chi
    Huang, Chih-hsiang
    Shen, Yi-ting
    Yang, Hong-sung
    Chou, Cheng-tung
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2351 - 2358
  • [42] Cadmium based metal oxide sorbents for pre-combustion CO2 capture
    Vogt, Christian
    Knowles, Gregory P.
    Chaffee, Alan L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [43] High-Temperature Pressure Swing Adsorption Process for CO2 Separation
    Yin, Junjun
    Qin, Changlei
    An, Hui
    Liu, Wenqiang
    Feng, Bo
    ENERGY & FUELS, 2012, 26 (01) : 169 - 175
  • [44] Pre-combustion CO2 capture by MDEA process in IGCC based on air-blown gasification
    Moioli, Stefania
    Giuffrida, Antonio
    Gamba, Simone
    Romano, Matteo C.
    Pellegrini, Laura
    Lozza, Giovanni
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2045 - 2053
  • [45] Thermodynamic analysis of hydrate-based pre-combustion capture of CO2
    Zhang, Junshe
    Yedlapalli, Prasad
    Lee, Jae W.
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (22) : 4732 - 4736
  • [46] Modeling of pre-combustion carbon capture with CO2-selective polymer membranes
    Meng, Lie
    Kai, Teruhiko
    Nakao, Shin-ichi
    Yogo, Katsunori
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 123
  • [47] Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture
    Usman, Muhammad
    Dai, Zhongde
    Hillestad, Magne
    Deng, Liyuan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 123 : 377 - 387
  • [48] A novel rapid temperature swing adsorption post-combustion CO2 capture process using a sorbent polymer composite
    Berger, Adam H.
    Horowitz, Jason A.
    Machalek, Tom
    Wang, Andrew
    Bhown, Abhoyjit S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2193 - 2202
  • [49] Pressure Swing Adsorption Process in Coal to Fischer-Tropsch Fuels with CO2 Capture
    Ribeiro, Ana M.
    Santos, Joao C.
    Rodrigues, Alirio E.
    Rifflart, Sebastien
    ENERGY & FUELS, 2012, 26 (02) : 1246 - 1253
  • [50] A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture
    Cao, Mingyuan
    Zhao, Linghao
    Xu, Dongwan
    Ciora, Richard
    Liu, Paul K. T.
    Manousiouthakis, Vasilios, I
    Tsotsis, Theodore T.
    JOURNAL OF MEMBRANE SCIENCE, 2020, 605