Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer

被引:255
|
作者
Nagpal, Kunal [1 ]
Foote, Davis [1 ]
Liu, Yun [1 ]
Chen, Po-Hsuan Cameron [1 ]
Wulczyn, Ellery [1 ]
Tan, Fraser [1 ]
Olson, Niels [2 ]
Smith, Jenny L. [2 ]
Mohtashamian, Arash [2 ]
Wren, James H. [3 ]
Corrado, Greg S. [1 ]
MacDonald, Robert [1 ]
Peng, Lily H. [1 ]
Amin, Mahul B. [4 ]
Evans, Andrew J. [5 ,6 ]
Sangoi, Ankur R. [7 ]
Mermel, Craig H. [1 ]
Hipp, Jason D. [1 ]
Stumpe, Martin C. [8 ]
机构
[1] Google, Google AI Healthcare, Mountain View, CA 94043 USA
[2] Naval Med Ctr San Diego, Lab Dept, San Diego, CA USA
[3] Henry M Jackson Fdn, Bethesda, MD USA
[4] Univ Tennessee, Dept Pathol & Lab Med, Hlth Sci Ctr, Memphis, TN USA
[5] Univ Hlth Network, Dept Pathol, Lab Med & Pathol, Toronto, ON, Canada
[6] Univ Toronto, Toronto, ON, Canada
[7] El Camino Hosp, Dept Pathol, 2500 Grant Rd, Mountain View, CA 94040 USA
[8] Tempus Labs Inc, AI & Data Sci, Chicago, IL 60654 USA
关键词
ISUP CONSENSUS-CONFERENCE; INTEROBSERVER-REPRODUCIBILITY; RADICAL PROSTATECTOMY; INTERNATIONAL-SOCIETY; DIABETIC-RETINOPATHY; CARCINOMA; ADENOCARCINOMA; SPECIMENS; IMPACT; CLASSIFICATION;
D O I
10.1038/s41746-019-0112-2
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
For prostate cancer patients, the Gleason score is one of the most important prognostic factors, potentially determining treatment independent of the stage. However, Gleason scoring is based on subjective microscopic examination of tumor morphology and suffers from poor reproducibility. Here we present a deep learning system (DLS) for Gleason scoring whole-slide images of prostatectomies. Our system was developed using 112 million pathologist-annotated image patches from 1226 slides, and evaluated on an independent validation dataset of 331 slides. Compared to a reference standard provided by genitourinary pathology experts, the mean accuracy among 29 general pathologists was 0.61 on the validation set. The DLS achieved a significantly higher diagnostic accuracy of 0.70 (p = 0.002) and trended towards better patient risk stratification in correlations to clinical follow-up data. Our approach could improve the accuracy of Gleason scoring and subsequent therapy decisions, particularly where specialist expertise is unavailable. The DLS also goes beyond the current Gleason system to more finely characterize and quantitate tumor morphology, providing opportunities for refinement of the Gleason system itself.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
    Kunal Nagpal
    Davis Foote
    Yun Liu
    Po-Hsuan Cameron Chen
    Ellery Wulczyn
    Fraser Tan
    Niels Olson
    Jenny L. Smith
    Arash Mohtashamian
    James H. Wren
    Greg S. Corrado
    Robert MacDonald
    Lily H. Peng
    Mahul B. Amin
    Andrew J. Evans
    Ankur R. Sangoi
    Craig H. Mermel
    Jason D. Hipp
    Martin C. Stumpe
    [J]. npj Digital Medicine, 2
  • [2] Publisher Correction: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
    Kunal Nagpal
    Davis Foote
    Yun Liu
    Po-Hsuan Cameron Chen
    Ellery Wulczyn
    Fraser Tan
    Niels Olson
    Jenny L. Smith
    Arash Mohtashamian
    James H. Wren
    Greg S. Corrado
    Robert MacDonald
    Lily H. Peng
    Mahul B. Amin
    Andrew J. Evans
    Ankur R. Sangoi
    Craig H. Mermel
    Jason D. Hipp
    Martin C. Stumpe
    [J]. npj Digital Medicine, 2
  • [3] Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer (vol 2, 48, 2019)
    Nagpal, Kunal
    Foote, Davis
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Wulczyn, Ellery
    Tan, Fraser
    Olson, Niels
    Smith, Jenny L.
    Mohtashamian, Arash
    Wren, James H.
    Corrado, Greg S.
    MacDonald, Robert
    Peng, Lily H.
    Amin, Mahul B.
    Evans, Andrew J.
    Sangoi, Ankur R.
    Mermel, Craig H.
    Hipp, Jason D.
    Stumpe, Martin C.
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [4] Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens
    Nagpal, Kunal
    Foote, Davis
    Tan, Fraser
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Steiner, David F.
    Manoj, Naren
    Olson, Niels
    Smith, Jenny L.
    Mohtashamian, Arash
    Peterson, Brandon
    Amin, Mahul B.
    Evans, Andrew J.
    Sweet, Joan W.
    Cheung, Carol
    van der Kwast, Theodorus
    Sangoi, Ankur R.
    Zhou, Ming
    Allan, Robert
    Humphrey, Peter A.
    Hipp, Jason D.
    Gadepalli, Krishna
    Corrado, Greg S.
    Peng, Lily H.
    Stumpe, Martin C.
    Mermel, Craig H.
    [J]. JAMA ONCOLOGY, 2020, 6 (09) : 1372 - 1380
  • [5] An Independent Prospective Validation of a Deep Learning Algorithm for Prostate Cancer Detection and Gleason Grading
    Albertson, Daniel
    Suh, In Hye
    Mota, Sheila
    Barry, Marc
    Mahlow, Jonathon
    Knudsen, Beatrice
    Sirohi, Deepika
    Kwak, Tae-Yeong
    Lee, Yoon
    Kim, Sun Woo
    Chang, Hyeyoon
    [J]. LABORATORY INVESTIGATION, 2023, 103 (03) : S682 - S683
  • [6] Improving Gleason scoring in prostate cancer: Development and clinical value of the Molecular Integrative Quantitative Gleason (MIQ-Gleason)
    Simon, Ronald
    Kluth, Martina
    Lennartz, Maximilian
    Hube-Magg, Claudia
    Minner, Sarah
    Tsourlakis, Maria Christina
    Steurer, Stefan
    Graefen, Markus
    Huland, Hartwig
    Budaus, Lars
    Sauter, Guido
    Schlomm, Thorsten
    [J]. CANCER RESEARCH, 2017, 77
  • [7] Development of a Deep Learning Algorithm for the Histopathologic Diagnosis and Gleason Grading of Prostate Cancer Biopsies: A Pilot Study
    Kott, Ohad
    Linsley, Drew
    Amin, Ali
    Karagounis, Andreas
    Jeffers, Carleen
    Golijanin, Dragan
    Serre, Thomas
    Gershman, Boris
    [J]. EUROPEAN UROLOGY FOCUS, 2021, 7 (02): : 347 - 351
  • [8] Editorial Statement on Gleason Scoring for Prostate Cancer
    Zietman, Anthony L.
    Smith, Joseph
    Klein, Eric
    Droller, Michael
    Dasgupta, Prokar
    Catto, James
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (04): : 1092 - 1092
  • [9] Editorial Statement on Gleason Scoring for Prostate Cancer
    Egevad, Lars
    Samaratunga, Hemamali
    Srigley, John R.
    Delahunt, Brett
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (05): : 1126 - +
  • [10] A DEEP LEARNING ALGORITHM FOR THE DIAGNOSIS AND GLEASON GRADING OF WHOLE SLIDE IMAGES OF PROSTATE CANCER CORE BIOPSIES
    Kott, Ohad
    Li, Sizhe
    Linsley, Drew
    Amin, Ali
    Golijanin, Bora
    Golijanin, Dragan
    Serre, Thomas
    Gershman, Boris
    [J]. JOURNAL OF UROLOGY, 2020, 203 : E1089 - E1089