Convergence properties of modular eigenfunctions for the p(•)-Laplacian

被引:7
|
作者
Lang, Jan [1 ]
Mendez, Osvaldo [2 ]
机构
[1] Ohio State Univ, Dept Math Sci, Columbus, OH 43210 USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
Variable exponent; p-Laplacian; Sobolev embedding; Stability of solutions; Modular spaces; Maximal functions; Eigenvalue problems; Convergence of eigenfunctions; VARIABLE EXPONENT; SPACES;
D O I
10.1016/j.na.2014.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variation of the first Dirichlet eigenfunction for the modular p(center dot)-Laplacian is studied as a generalization of the constant case. The stability of the eigenfunctions under perturbations of the norm of the underlying spaces (i.e., with respect to perturbations of the exponent p(center dot)) is observed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 170
页数:15
相关论文
共 50 条