Time expressions embedded in text are important for many down-stream tasks in NLP and IR. They have been, for example, utilized for timeline summarization, named entity recognition, temporal information retrieval, question answering and others. In this paper, we introduce a novel analytical approach to analyzing characteristics of time expressions in diachronic text collections. Based on a collection of news articles published over a 33-years' long time span, we investigate several aspects of time expressions with a focus on their interplay with publication dates of containing documents. We utilize a graph-based representation of temporal expressions to represent them through their co-occurring named entities. The proposed approach results in several observations that could be utilized in automatic systems that rely on processing temporal signals embedded in text. It could be also of importance for professionals (e.g., historians) who wish to understand fluctuations in collective memories and collective expectations based on large-scale, diachronic document collections.