The expected independent domination number of random directed rooted trees

被引:0
|
作者
Song, JH [1 ]
Lee, CW [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 130743, South Korea
关键词
independence number; domination number; independent domination number; random directed rooted tree; expected value;
D O I
10.4134/JKMS.2004.41.5.921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a formula for the expected value mu(n) of the independent domination number of a random directed rooted tree with n labeled vertices and determine the asymptotic behavior of mu(n) as n goes to infinity.
引用
收藏
页码:921 / 931
页数:11
相关论文
共 50 条
  • [41] Total Roman Domination Number of Rooted Product Graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Carrion Garcia, Andres
    Hernandez Mira, Frank A.
    MATHEMATICS, 2020, 8 (10) : 1 - 13
  • [42] The Domination Number of a Random Graph
    Henning, Michael A.
    Yeo, Anders
    UTILITAS MATHEMATICA, 2014, 94 : 315 - 328
  • [43] Trees with Double Roman Domination Number Twice the Domination Number Plus Two
    H. Abdollahzadeh Ahangar
    J. Amjadi
    M. Chellali
    S. Nazari-Moghaddam
    S. M. Sheikholeslami
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1081 - 1088
  • [44] Trees with Double Roman Domination Number Twice the Domination Number Plus Two
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Chellali, M.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 1081 - 1088
  • [45] 2-Independent Domination in Trees
    Zhang, Gang
    Wu, Baoyindureng
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (02) : 485 - 494
  • [46] A note on the independent domination number versus the domination number in bipartite graphs
    Shaohui Wang
    Bing Wei
    Czechoslovak Mathematical Journal, 2017, 67 : 533 - 536
  • [47] Cubic Graphs with Large Ratio of Independent Domination Number to Domination Number
    Suil, O.
    West, Douglas B.
    GRAPHS AND COMBINATORICS, 2016, 32 (02) : 773 - 776
  • [48] On trees with domination number equal to edge-vertex roman domination number
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)
  • [49] On trees with double domination number equal to total domination number plus one
    Krzywkowski, Marcin
    ARS COMBINATORIA, 2011, 102 : 3 - 10
  • [50] The stability of independent transversal domination in trees
    Pushpam, P. Roushini Leely
    Bhanthavi, K. Priya
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)