Design of a Microwave Microplasma Source at Atmospheric Pressure

被引:17
|
作者
Gregorio, Jose [1 ]
Leroy, Olivier [2 ]
Leprince, Philippe [2 ]
Alves, Luis L. [1 ]
Boisse-Laporte, Caroline [2 ]
机构
[1] Inst Super Tecn, Inst Plasma & Fusao Nucl, P-1049001 Lisbon, Portugal
[2] Univ Paris 11, Phys Gaz & Plasmas Lab, CNRS, F-91405 Orsay, France
关键词
Atmospheric-pressure discharges; linear resonator; microplasma; microwave; optical diagnostics; power coupling; LINE-PROFILES; PLASMA; DISCHARGE;
D O I
10.1109/TPS.2009.2016203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper studies two linear resonator sources, which use a continuous 2.45-GHz microwave excitation to produce stable microplasmas, in air and in argon, at atmospheric pressure. The discharges are produced and sustained within the 50-200-mu m gap created between two metal electrodes with either 6 or 14 mm in length. Particular attention is given to the design and optimization of the sources (in terms of frequency tuning and power coupling), following a complementary approach based on simulations and experiments. Optical-emission-spectroscopy diagnostics allow one to deduce the rotational, vibrational, and excitation gas temperatures and the electron density (using Stark broadening measurements of the H-beta line-emission profile).
引用
下载
收藏
页码:797 / 808
页数:12
相关论文
共 50 条
  • [41] Surface Modification of GaN Substrate by Atmospheric Pressure Microplasma
    Shimizu, Kazuo
    Noma, Yuta
    Blajan, Marius
    Naritsuka, Shigeya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (08)
  • [42] ATMOSPHERIC PRESSURE MICROPLASMA SYSTEM WITH VORTEX GAS FLOW
    Solomenko, O.
    Chernyak, V.
    Lendiel, V.
    Hamazin, D.
    Kalustova, D.
    HAKONE XV: INTERNATIONAL SYMPOSIUM ON HIGH PRESSURE LOW TEMPERATURE PLASMA CHEMISTRY: WITH JOINT COST TD1208 WORKSHOP: NON-EQUILIBRIUM PLASMAS WITH LIQUIDS FOR WATER AND SURFACE TREATMENT, 2016, : 232 - 235
  • [43] Hydrophobic coatings deposited with an atmospheric pressure microplasma jet
    Vogelsang, Andreas
    Ohl, Andreas
    Foest, Ruediger
    Schroeder, Karsten
    Weltmann, Klaus-Dieter
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (48)
  • [44] Nitric oxide generated by atmospheric pressure air microplasma
    Matsuo, Keita
    Yoshida, Hidekazu
    Choi, Jaegu
    Hosseini, S. Hamid R.
    Namihira, Takao
    Katsuki, Sunao
    Akiyama, Hidenori
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 996 - 1000
  • [45] Electron and ion kinetics in a DC microplasma at atmospheric pressure
    Choi, Jun
    Iza, Felipe
    Lee, Jae Koo
    Ryu, Chang-Mo
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (05) : 1274 - 1278
  • [46] Heat transport of nitrogen in helium atmospheric pressure microplasma
    Xu, S. F.
    Zhong, X. X.
    APPLIED PHYSICS LETTERS, 2013, 103 (02)
  • [47] Development of an integrated, single electrode liquid sampling - atmospheric pressure glow discharge microplasma ionization source
    Williams, Tyler J.
    Marcus, R. Kenneth
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2021, 179
  • [48] Numerical Design of the Cavity for the Uniform Atmospheric Microwave Plasma Source
    Lee, S. W.
    Kang, H. J.
    Kim, H. S.
    Uhm, H. S.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (06) : 2297 - 2301
  • [49] Individual ignition of RF microplasma array at atmospheric pressure
    Martinet, David
    Filliger, Sebastian
    Germanier, Alain
    Gugler, Gilbert
    Ellert, Christoph
    PLASMA PROCESSES AND POLYMERS, 2023, 20 (02)
  • [50] Rotating discharges in a coaxial microwave plasma source under atmospheric pressure
    Liu, Zhuang
    Zhang, Wencong
    Yu, Jie
    Wu, Li
    Huang, Kama
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (11)