Convergence of iterative learning control for SISO nonrepetitive systems subject to iteration-dependent uncertainties

被引:64
|
作者
Meng, Deyuan [1 ,2 ]
Moore, Kevin L. [3 ]
机构
[1] Beihang Univ BUAA, Res Div 7, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] Colorado Sch Mines, Dept Elect Engn & Comp Sci, Golden, CO 80401 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Iterative learning control; Nonrepetitive systems; Iteration-dependent uncertainty; Robust convergence; Extended relative degree; CONTROL DESIGN; TIME-SYSTEMS; DISTURBANCES; NETWORKS; FEEDBACK;
D O I
10.1016/j.automatica.2017.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the robust convergence properties of iterative learning control (ILC) for single-input, single-output (SISO), nonrepetitive systems subject to iteration-dependent uncertainties that arise in not only initial states and external disturbances but also plant models. Given an extended relative degree condition, it is possible to propose necessary and sufficient (NAS) conditions for robust ILC convergence. The tracking error bound is shown to depend continuously on the bounds of the iteration-dependent uncertainties. When the iteration-dependent uncertainties are bounded, NAS conditions exist to guarantee bounded system trajectories and output tracking error. If the iteration-dependent uncertainties converge, then NAS conditions ensure bounded system trajectories and zero output tracking error. The results are also extended to a class of affine nonlinear systems satisfying a Lipschitz condition. Simulation tests on a representative batch process demonstrate the validity of the obtained robust ILC convergence results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [41] Segment-wise learning control for trajectory tracking of robot manipulators under iteration-dependent periods
    Fan ZHANG
    Deyuan MENG
    Kaiquan CAI
    Science China(Information Sciences), 2024, 67 (03) : 155 - 166
  • [42] Convergence Analysis of Iterative Learning Control Systems Over Networks With Successive Input Data Compensation in Iteration Domain
    Huang, Lixun
    Zhang, Qiuwen
    Liu, Weihua
    Li, Jianyong
    Sun, Lijun
    Wang, Tao
    IEEE ACCESS, 2019, 7 : 160217 - 160226
  • [43] Data-Driven Robust Finite-Iteration Learning Control for MIMO Nonrepetitive Uncertain Systems
    Liu, Zhiqing
    Chi, Ronghu
    Liu, Yang
    Huang, Biao
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (11) : 6307 - 6318
  • [44] A Fuzzy System Based Iterative Learning Control for Nonlinear Discrete-Time Systems with Iteration-Varying Uncertainties
    Chien, Chiang-Ju
    Wang, Ying-Chung
    PROCESSES, 2022, 10 (07)
  • [45] Robust PD-type iterative learning control design for uncertain batch processes subject to nonrepetitive disturbances
    Maniarski, Robert
    Paszke, Wojciech
    Hao, Shoulin
    Tao, Hongfeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2266 - 2271
  • [46] Adaptive Iterative Learning Control for SISO Discrete Time-Varying Systems
    Sun, Mingxuan
    Liu, Xiangbin
    He, Haigang
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 58 - 63
  • [47] Decentralized adaptive iterative learning control for interconnected systems with uncertainties
    Lili Sun
    Tiejun Wu
    Journal of Control Theory and Applications, 2012, 10 (4): : 490 - 496
  • [48] Decentralized adaptive iterative learning control for interconnected systems with uncertainties
    Lili SUN
    Tiejun WU
    Journal of Control Theory and Applications, 2012, 10 (04) : 490 - 496
  • [49] Neural Network Iterative Learning for SISO Non-Affine Control Systems
    Vlachos, Christos
    Tolis, Fotios
    Karras, George C.
    Bechlioulis, Charalampos P.
    ELECTRONICS, 2024, 13 (08)
  • [50] Robust high-order iterative learning control approach for two-dimensional linear discrete time-varying Fornasini-Marchesini systems with iteration-dependent reference trajectory
    Wan, Kai
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (05) : 1068 - 1089