Convergence of iterative learning control for SISO nonrepetitive systems subject to iteration-dependent uncertainties

被引:64
|
作者
Meng, Deyuan [1 ,2 ]
Moore, Kevin L. [3 ]
机构
[1] Beihang Univ BUAA, Res Div 7, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] Colorado Sch Mines, Dept Elect Engn & Comp Sci, Golden, CO 80401 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Iterative learning control; Nonrepetitive systems; Iteration-dependent uncertainty; Robust convergence; Extended relative degree; CONTROL DESIGN; TIME-SYSTEMS; DISTURBANCES; NETWORKS; FEEDBACK;
D O I
10.1016/j.automatica.2017.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the robust convergence properties of iterative learning control (ILC) for single-input, single-output (SISO), nonrepetitive systems subject to iteration-dependent uncertainties that arise in not only initial states and external disturbances but also plant models. Given an extended relative degree condition, it is possible to propose necessary and sufficient (NAS) conditions for robust ILC convergence. The tracking error bound is shown to depend continuously on the bounds of the iteration-dependent uncertainties. When the iteration-dependent uncertainties are bounded, NAS conditions exist to guarantee bounded system trajectories and output tracking error. If the iteration-dependent uncertainties converge, then NAS conditions ensure bounded system trajectories and zero output tracking error. The results are also extended to a class of affine nonlinear systems satisfying a Lipschitz condition. Simulation tests on a representative batch process demonstrate the validity of the obtained robust ILC convergence results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [1] Robust Tracking of Nonrepetitive Learning Control Systems with Iteration-Dependent References
    Meng, Deyuan
    Zhang, Jingyao
    Meng, Deyuan (dymeng@buaa.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc. (51): : 842 - 852
  • [2] Robust Tracking of Nonrepetitive Learning Control Systems With Iteration-Dependent References
    Meng, Deyuan
    Zhang, Jingyao
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (02): : 842 - 852
  • [3] Robust Iterative Learning Control of 2-D Linear Discrete FMMII Systems Subject to Iteration-Dependent Uncertainties
    Wan, Kai
    Li, Xiao-Dong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (10): : 5949 - 5961
  • [4] Robust Iterative Learning Control for 2-D Linear Nonrepetitive Discrete Systems With Iteration-Dependent Trajectory
    Wan, Kai
    Xie, Heng
    Xu, Qing-Yuan
    IEEE ACCESS, 2022, 10 : 125015 - 125026
  • [5] A nonrepetitive fault estimation design via iterative learning scheme for nonlinear systems with iteration-dependent references
    Li, Feng
    Kenan, Du
    Shuiqing, Xu
    Ke, Zhang
    Yi, Chai
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (07): : 5169 - 5179
  • [6] A nonrepetitive fault estimation design via iterative learning scheme for nonlinear systems with iteration-dependent references
    Feng Li
    Du Kenan
    Xu Shuiqing
    Zhang Ke
    Chai Yi
    Neural Computing and Applications, 2022, 34 : 5169 - 5179
  • [7] Adaptive iterative learning control for 2-D nonlinear discrete systems with iteration-dependent uncertainties
    Wan, Kai
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2025,
  • [8] Deterministic Convergence for Learning Control Systems Over Iteration-Dependent Tracking Intervals
    Meng, Deyuan
    Zhang, Jingyao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (08) : 3885 - 3892
  • [9] Neural network based iterative learning control for magnetic shape memory alloy actuator with iteration-dependent uncertainties
    Yu, Yewei
    Zhang, Chen
    Cao, Wenjing
    Huang, Xiaoliang
    Zhang, Xiuyu
    Zhou, Miaolei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 187
  • [10] Terminal Iterative Learning Control for Nonaffine Nonlinear Systems with Nonrepetitive Uncertainties
    Hui, Yu
    Chi, Ronghu
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1539 - 1543